Non-perturbative renormalization in two flavor QCD: coupling, quark mass and axial current



Michele Della Morte Humboldt University, Berlin

> Tsukuba February, 2004

work in collaboration with F. Knechtli, J. Rolf, R. Sommer, I. Wetzorke, U. Wolff + S. Dürr and R. Hoffmann (Z<sub>A</sub> and c<sub>A</sub>)

# Motivations

- $\alpha_{\rm s}$  ,  $m_{\rm i}$  fundamental parameters describing the theory of strong interactions, QCD ,
- ratio of light quark masses predicted by  $\chi$ PT. Their magnitude is not accessible by  $\chi$ PT combined with experimental data  $\Rightarrow$   $m_{\rm strange}$  from quenched lattice QCD + K-mesons masses as input:

 $\overline{m}_{s}(2 \text{ GeV}) = 97(4) \text{ MeV} \quad [\overline{\text{MS} scheme}]$ ALPHA+UKQCD '99

 running quark masses enter the strong interactions corrections to weak processes involving quarks (e.g. D and B decays)

 $m_{\rm c}$  from PDG:  $1.0 \le \overline{m}_{\rm c}(\overline{m}_{\rm c}) \le 1.4 {\rm GeV}$ quenched result:  $\overline{m}_{\rm c}(\overline{m}_{\rm c}) = 1.301(34) {
m GeV}$ ALPHA 2002

### The quenched charm quark mass



- *D<sub>s</sub>* meson mass used as input (electromagnetic mass shifts are negligible)
- 3 different lattice definitions of the quark mass extrapolated to the continuum limit (using previously computed, mass independent, Z factors)
- $\Rightarrow m_c^{\text{SF}}(1.436r_0)$  evolved to  $m_c^{\text{RGI}}$  and then in the  $\overline{\text{MS}}$  scheme at the scale  $m_c$

Non-perturbative renormalization in QCD

 $g_0$  and  $m_i^{bare}$ ,  $i = 1 \dots N_f$  are the free parameters of QCD. Renormalized parameters depend on some energy scale  $\mu$ :

• In a mass independent renormalization scheme running is given by RGE's

$$\mu \frac{\mathrm{d}\overline{g}}{\mathrm{d}\mu} = \beta(\overline{g}) \,, \quad \mu \frac{\mathrm{d}\overline{m}_i}{\mathrm{d}\mu} = \tau(\overline{g})\overline{m}_i$$

$$\beta(\overline{g}) \sim_{\overline{g} \to 0} -\overline{g}^3 \{ b_0 + b_1 \overline{g}^2 + b_2 \overline{g}^4 + \dots \}$$
  
$$\tau(\overline{g}) \sim_{\overline{g} \to 0} -\overline{g}^2 \{ d_0 + d_1 \overline{g}^2 + \dots \}$$

- $\overline{g}$ ,  $\overline{m}_i$  and  $\beta$ ,  $\tau$  are renormalization scheme dependent
- $\beta$  and  $\tau$  are non-perturbatively defined functions, if the coupling  $\overline{g}$  is nonperturbative

**Renormalization Group Invariants** 

$$\Lambda = \mu (b_0 \overline{g}^2)^{-b_1/2b_0^2} \exp\left\{-\frac{1}{2b_0 \overline{g}^2}\right\}$$
$$\times \exp\left\{-\int_0^{\overline{g}} \mathrm{d}x \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x}\right]\right\}$$
$$M_i = \overline{m}_i (2b_0 \overline{g}^2)^{-d_0/2b_0} \exp\left\{-\int_0^{\overline{g}} \mathrm{d}x \left[\frac{\tau(x)}{\beta(x)} - \frac{d_0}{b_0 x}\right]\right\}$$
$$\overline{g} = \overline{g}(\mu), \quad \overline{m}_i = \overline{m}_i(\mu)$$

- exact, defined beyond perturbation theory
- $\Lambda_{\rm scheme}/\Lambda_{\rm scheme'}$  = number, exact at 1-loop
- $(M_{\text{scheme}})_i = (M_{\text{scheme}'})_i = M_i$
- $\overline{m}_i/M_i$  independent of flavour *i*

**A**, M<sub>i</sub> **fundamental parameters of QCD** may be computed on the lattice, inputting quantities like hadron masses or  $F_{\pi}$  (low energy hadronic scheme).

⇒ The running of parameters must be nonperturbatively traced to low energy scales.

$$\left[ egin{array}{c} F_{\pi} \ m_{
m K} \end{array} 
ight] egin{array}{c} {
m Lattice \ QCD} \ \Leftrightarrow \ g_{0}, \, m_{i}^{
m bare}, \, i=1,...,N_{
m f} \end{array} \left[ egin{array}{c} \Lambda_{
m QCD} \ M_{
m s} \end{array} 
ight]$$

we adopt the Schrödinger functional renormalization scheme:

$$\mathcal{Z} = e^{-\Gamma} = \int_{\mathrm{TxL}^3} D[U, \psi \bar{\psi}] e^{-S}$$

+ periodic boundary conditions in space and Dirichlet boundary conditions in time (angle  $\eta$  and Grassman values  $\rho, \bar{\rho}$ )

• coupling:

$$\bar{g}^2(L)=k/\frac{\partial\Gamma}{\partial\eta}=k/\langle\frac{\partial S}{\partial\eta}\rangle$$

• quark mass. Gauge invariant correlators:



LxLxLLxLxLRenormalized and O(a) improved quarkmass can be defined via the PCAC relation :

$$\overline{m}_{i}(\mu) = \frac{Z_{A}}{Z_{P}(L)} \frac{(1 + b_{A}m_{q})\tilde{\partial}_{0}f_{A}^{I}}{(1 + b_{P}m_{q})f_{P}} , \quad \mu = \frac{1}{L}$$
$$f_{A}^{I} = f_{A} + c_{A}a\partial_{0}f_{P}$$

*Z*<sub>A</sub> by current algebra, scale independent.We define :

$$Z_{\rm P}(L) = \frac{\sqrt{3f_1}}{f_{\rm P}(L/2)}$$
 at  $m_i = 0$ ,  $i = 1, ..., N_{\rm f}$ 

and we use 1 loop value for  $c_A$ .

• Running: step scaling functions  $\sigma(u)$  ,  $\sigma_{\mathrm{P}}(u)$ 

$$\sigma(u) = \bar{g}^2(2L)|_{\bar{g}^2(L)=u,m_i=0} ,$$

$$\sigma_{\mathbf{P}}(u) = \left. \frac{\overline{m}(L)}{\overline{m}(2L)} = \frac{Z_{\mathbf{P}}(2L)}{Z_{\mathbf{P}}(L)} \right|_{\overline{g}^2(L)=u, m_i=0}$$

 $\Rightarrow$  integrated form of the  $\beta$  and  $\tau$ -functions.

• Starting from  $L_{\max}$  s.t.  $\bar{g}^2(L_{\max}) = u_0$  and solving k times the recursions:

$$\begin{cases} u_0 = \overline{g}^2(L_{\max}) = 3.3 \\ \sigma(u_{k+1}) = u_k \end{cases} \qquad \begin{cases} v_0 = 1 \\ v_{k+1} = \frac{v_k}{\sigma_P(u_k)} \end{cases}$$
$$\Rightarrow u_k = \overline{g}^2(2^{-k}L_{\max}) \qquad \Rightarrow v_k = \frac{\overline{m}(2L_{\max})}{\overline{m}(2^{-k+1}L_{\max})} \end{cases}$$

until the coupling  $\bar{g}^2(2-kL_{\max})$  is perturbative, one can compute  $\Lambda L_{\max}$  and  $M/\overline{m}(2L_{\max})$ using  $2(\tau)/3(\beta)$  loop functions. **O**(*a*) improved Wilson fermions ( $N_{\rm f} = 2$ ) in SF.

**coupling:** u and  $\sigma(u)$  for lattice resolutions L/a = 4, 5, 6, 8 and L/a = 8, 10, 12, 16.

| L/a | u          | $\sum$     | u           | $\sum$    |
|-----|------------|------------|-------------|-----------|
| 4   | 0.9793(7)  | 1.0643(34) | 1.5031(12)  | 1.720(5)  |
| 5   | 0.9793(6)  | 1.0721(39) | 1.5033(26)  | 1.737(10) |
| 6   | 0.9793(11) | 1.0802(44) | 1.5031(30)  | 1.730(12) |
| 8   | 0.9807(17) | 1.0745(55) | 1.5077(43)  | 1.716(14) |
| 4   | 1.1814(5)  | 1.3154(55) | 2.0142(24)  | 2.481(17) |
| 5   | 1.1807(12) | 1.3287(59) | 2.0142(44)  | 2.438(19) |
| 6   | 1.1814(15) | 1.3253(67) | 2.0146(56)  | 2.508(26) |
| 8   | 1.1818(29) | 1.3338(58) | 2.0142(102) | 2.475(31) |
| 4   | 1.5031(10) | 1.731(6)   | 2.4792(34)  | 3.251(28) |
| 5   | 1.5031(20) | 1.758(11)  | 2.4792(73)  | 3.336(50) |
| 6   | 1.5031(25) | 1.745(12)  | 2.4792(82)  | 3.156(55) |
| 8   |            |            | 2.4792(128) | 3.348(48) |
| 4   | 1.7319(11) | 2.058(7)   | 3.334(11)   | 5.513(42) |
| 5   | 1.7333(32) | 2.086(21)  | 3.334(15)   | 5.41(12)  |
| 6   | 1.7319(34) | 2.058(20)  | 3.326(20)   | 5.62(9)   |
| 8   |            |            | 3.334(19)   | 5.48(12)  |

# ALPHA Collaboration: hep-lat/0209023 hep-lat/0105003

continuum limit from L/a = 6, 8, L/a = 5 used to estimate systematic uncertainty,



8

Non-perturbative evolution  $L_{\max} \rightarrow 2^{-n}L_{\max}$ , perturbative evolution  $2^{-n}L_{\max} \rightarrow 0$  ( $\infty$  energy):

| n | continuum 6/8 | L/a = 5 | n | continuum 6/8 | L/a = 5 |
|---|---------------|---------|---|---------------|---------|
| 5 | 1.82(5)       | 1.87    | 6 | 1.23(5)       | 1.27    |
| 6 | 1.84(6)       | 1.89    | 7 | 1.25(6)       | 1.28    |
| 7 | 1.85(7)       | 1.91    | 8 | 1.26(7)       | 1.30    |

 $\ln(\Lambda L_{\max}) = -1.85(13) \quad [\overline{g}^2(L_{\max}) = 3.3]$  $\ln(\Lambda L'_{\max}) = -1.26(11) \quad [\overline{g}^2(L'_{\max}) = 5],$ 



# Comparison with experimental results (Bethke 2000)



- results from experiments compared with perturbation theory predictions ⇒ only short distance regime accessible
- non perturbative assumptions or inputs needed for estimates at lower energies (factorization, sum rules ...)

running mass: at the same couplings we computed  $Z_P(L)$  and  $Z_P(2L)$  for lattice resolutions L/a = 6, 8, 12 and L/a = 12, 16, 24



Non-perturbative evolution  $L_{\text{max}} \rightarrow 2^{-7}L_{\text{max}}$ ,  $\bar{g}^2(L_{\text{max}}) = 4.68$  taking c.l. from L/a = 8 and L/a = 12 data. Perturbative evolution  $2^{-7}L_{\text{max}} \rightarrow 0$  ( $\infty$  energy) using  $2(\tau)/3(\beta)$  loop functions.

$$\frac{M}{\overline{m}(L_{\max})} = 1.30(3)$$



The axial current renormalization constant

It enters the computation of  $F_{\pi}$  and pseudoscalar mesons decay constants (e.g.  $F_{D_s}$ )

We want to use the full PCAC relation to derive a renormalization condition



i.e., including the volume integral.

This is in view of dynamical results. In this case the cost of the simulations rapidly increases when decreasing the quark mass.



#### Schrödinger Functional:

- QCD on a space-time cylinder  $L^3 \times T$
- periodic b.c.'s in spatial directions
- fixed (Dirichlet) b.c.'s in time direction

• 
$$\mathcal{O}_{\text{ext}}^c = -\frac{1}{6L^6} \epsilon^{cde} \mathcal{O}'^d \mathcal{O}^e$$

•  $\mathcal{O}$  ( $\mathcal{O}'$ ): zero-momentum pseudo-scalar states at  $x_0 = 0$  ( $x_0 = T$ )

With insertions at a physical distance 3/4L among each other. Introducing the correlators

$$f_{A}^{A}(x_{0}, y_{0}) = -\frac{a^{6}}{6L^{6}} \sum_{\mathbf{x}, \mathbf{y}} \epsilon^{abc} \epsilon^{cde} \left\langle \mathcal{O}^{\prime d}(A_{I})^{a}_{0}(x)(A_{I})^{b}_{0}(y)\mathcal{O}^{e} \right\rangle$$

$$f_{PA}(y_{0}+t, y_{0}) = -\frac{a^{7}}{6L^{6}} \sum_{x_{0}=y_{0}}^{y_{0}+t} \sum_{\mathbf{x}, \mathbf{y}} \epsilon^{abc} \epsilon^{cde} \left\langle \mathcal{O}^{\prime d}P^{a}(x)(A_{I})^{b}_{0}(y)\mathcal{O}^{e} \right\rangle$$
contact terms!

The WI reads

$$Z_A^2(1 + b_A a m_q)^2 (f_{AA} - 2m f_{PA}) = f_1$$

- Excluding the volume integral would be wrong (for a finite mass) !! We would have errors O(r<sub>0</sub>m) instead of errors O(am).
- The contact terms introduce O(*a*) (improvement doesn't work). They seem to be integrable, after extrapolation the result is consistent with the one when the volume integral is neglected.



In order to keep under control  $O(a^2)$  ambiguities we want to compute  $Z_A$  on a line of constant physics (for  $c_A$  they are O(a) !!).

 $N_{\rm f} = 2$ 



- Correlation between spikes in *f*<sub>1</sub> and small eigenvalues of the Dirac operator?
- Can we sample the spikes with their proper weight?

$$\Rightarrow$$
 PHMC (?)



# The axial current improvement constant $c_A$ (in collaboration with CP-PACS and JLQCD)

• Large cut-off effects have been observed in  $N_f = 2$  simulations with Wilson fermions

| action | eta | $N_{\rm f}$ | $\Delta m [{ m MeV}] \times \frac{a^{-1}}{2 { m GeV}}$ |
|--------|-----|-------------|--------------------------------------------------------|
| W/SW   | 6.0 | 0           | 12(1)                                                  |
| W/SW   | 5.2 | 2           | 28(1)                                                  |
| W/W    | 5.5 | 2           | 96(4)                                                  |
| I/SW   | 2.2 | 2           | <b>-2(4)</b>                                           |

$$\Delta m = m(\infty) - m(L/a = 8)$$

- improvement coefficients are ambiguous by O(a)
- computing c<sub>A</sub> on a line of constant physics, these ambiguities are not removed, but smoothly vanish (∝ a) when approaching the region of applicability of PT

$$(A_0^a)_I(x) = A^a(x) + a c_A \frac{\partial_0 + \partial_0^*}{2} P^a(x)$$

in the SF we introduce wavefunctions at the boundaries

$$\begin{split} O_{ij} &= \frac{a^6}{L^3} \sum_{\mathbf{u},\mathbf{v}} \bar{\zeta}_i(\mathbf{u}) \gamma_5 \zeta_j(\mathbf{v}) \ \omega(\mathbf{u} - \mathbf{v}) \\ f_X(x_0, T, L) &= -\frac{L^3}{2} \langle X(x) O \rangle \end{split}$$

The improved quark mass  $m = r + ac_A s$  is

$$r(x_0) = \frac{\frac{1}{2}(\partial_0 + \partial_0^*)f_A(x_0)}{2f_P(x_0)}$$
$$s(x_0) = \frac{\partial_0 \partial_0^* f_P(x_0)}{2f_P(x_0)}$$

We require *m* to be constant when changing

- (0)  $\theta$  at fixed  $x_0 = T/2$ , constant  $\omega$  (old ALPHA)
- (1)  $x_0$  at fixed  $\theta$  , constant  $\omega$  ("slope criterion")
- (2) state produced by  $O[\omega]$  ( $\simeq$  UKQCD, "gap criterion")

 $N_f = 0$  results

## slope method; $\theta = \pi$



# gap method; excited and ground pion states



# at larger values of β the two methods give consistent results

 $N_f = 2$  **PRELIMINARY results** @  $\beta = 5.2$ 

# slope method; $\theta = \pi$



# gap method; excited and ground pion states



- The methods, surprisingly give consistent results. On the other hand the old ALPHA method for θ = 0, θ' = π, V = 8<sup>3</sup> × 18 would give c<sub>A</sub> = -0.036(6).
- We have a preference for the gap method
  - The interpretation is clearer, results can be understood by a two state analysis of the correlator,
  - by definition it doesn't involve highenergy states,
  - good sensitivity  $\propto (m_{\pi^*}^2 m_{\pi}^2)$
  - no large lattices needed ( $12^4 @ \beta = 5.2$ ) and good signal.
- $\Delta m$  for W/SW is essentially unchanged if the NP value of  $c_A$  is used !! Large O( $a^2$ ) ?

# **Conclusions:**

- accurate studies of cutoff dependence in unquenched ( $N_{\rm f}=2$ ) simulations
- continuum limit for  $\sigma(u)$  and  $\Lambda L_{\max}$
- $Z_{\rm P}$  up to lattices L/a = 12 and L/a = 24, continuum limit for  $\sigma_{\rm P}$

$$\Rightarrow \frac{M}{\overline{m}(L_{\max})}$$

# **Outlook:**

- hadronic scheme and chiral perturbation theory
  - $\Rightarrow F_{\rm PS} L_{\rm max}$  $\overline{m} (2L_{\rm max}) (F_{\rm PS})^{-1} \quad at \quad m_{\rm PS} \approx m_{\rm K}$
- target/result

 $\Lambda(F_{\rm PS})^{-1}$  $M_{\rm strange}(F_{\rm PS})^{-1}$  •  $Z_A$  and  $c_A$  for two dynamical Wilson quarks. Preliminary results @  $\beta = 5.2$ . To keep cutoff effects (observed to be quite large) under control, it is important to stay on a line fo renormalized parameters, especially for  $c_A$ .