Schrödinger functional coupling with improved gauge actions in SU(3) gauge theory

Shinji Takeda

for CP-PACS collaboration:

S. Aoki, M. Fukugita, S. Hashimoto, K-I. Ishikawa, T. Ishikawa, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, M. Okawa, Y. Taniguchi, A. Ukawa, T. Yoshié

Winter School and Workshop on Lattice Gauge Theories "Non-perturbative improvement and renormalization" (@CCP February 2-4, 2004)

Introduction

High energy experiments

MS-scheme

 $\alpha_{\overline{\rm MS}}(m_Z=91.19{\rm GeV})\approx 0.12$

- Problem
 - Non-perturbative evolution of running coupling

Step scaling function(SSF), Schrödinger Functional (SF)

 \sim ALPHA Collaboration

Strategy

$N_{\rm f} = 3$ project

• $N_{\rm f} = 3$ **QCD simulation**

CP-PACS/JLQCD Collaborations

Ultimate goal : evaluation of $\alpha_{\overline{MS}}$ from $N_{\rm f} = 3$ QCD simulation

Why do we choose Iwasaki action ? Ref. JLQCD Collab., Nucl. Phys. B (Proc. Suppl.) 106, 263 (2002)

Purpose of this talk

Cut off dependence and universality check of SSF and low energy scale ratio with improved gauge actions in SU(3) gauge theory.

~ toward $N_f = 2, 3$ simulations

Outline

- **SF** set up and SF coupling
- **• O**(*a*) **boundary improvement coefficients**
- Non-perturbative evolution of running coupling
- Simulation results
 - SSF at u = 0.9944 (weak coupling region)
 - **SSF** at u = 2.4484 (strong coupling region)
 - $L_{\rm max}/r_0$ (low energy scale ratio)
- Conclusion

SF set up and SF coupling

Definition of SF coupling

$$\bar{g}_{\rm SF}^2(L) = k/\Gamma'|_{\eta=\nu=0} = k/\left\langle\frac{\partial S}{\partial\eta}\right\rangle\Big|_{\eta=\nu=0},$$
$$e^{-\Gamma} = \mathcal{Z} = \int D[U]e^{-S[U]},$$

where $S[U] = S_{imp}[U]$: improved gauge action.

O(*a***) boundary improvement coefficients**

• O(*a*) boundary improvement coefficients

$$c_{\rm t}^{R}(g_0^2) = 3/2 + c_{\rm t}^{R(1)}g_0^2 + O(g_0^4),$$

Ref. S. Aoki et al., NPB 540 (1999) 501, S. Takeda et al., PRD 68 (2003) 014505

	Iwasaki action	LW action	DBW2 action
$c_{t}^{P(1)}$	0.15180(13)	-0.002970(1)	0.448(26)
		wi	th $c_t^{R(1)} = 2c_t^{P(1)}$

Non-perturbative evolution of running coupling

Step scaling function (SSF)

Continuum SSF

Lattice SSF

 $\Sigma(2, u, a/L)$: SSF calculated on the lattice

Continuum limit

$$\sigma(2, u) = \lim_{a/L \to 0} \Sigma(2, u, a/L)$$

Low energy scale

$$u_i = \bar{g}^2(L_i)$$
 $i = 0, 1, 2, ..., n$

$$L_i = 2^{i-n} L_n = 2^{i-n} L_{\max} \quad (L_n = L_{\max})$$

Def of L_{\max}

$$\bar{g}_{\rm SF}^2(L_{\rm max}) = 3.480$$

Continuum limit of low energy scale ratio

$$L_{\max}/r_0 = \lim_{a/L_{\max}\to 0} \underbrace{(L_{\max}/a)}_{SF \text{ scheme}} \times \underbrace{(a/r_0)}_{Hadronic \text{ scheme}}$$

$$r_0 = 0.5 \text{ fm} : \text{ sommer scale}$$

Simulation results

SSF at u = 0.9944 (weak coupling region)

Ref. ALPHA Collaboration, NPB 544 (1999)

Perturbative improvement

k = 0, 1: tree level, 1-loop O(*a*) improvement case

$$\Sigma_{1}^{(k)}(u, a/L) = \frac{\Sigma^{(k)}(u, a/L)}{1 + \delta_{1}^{(k)}(a/L)u},$$

$$\Sigma^{(k)}(u, a/L) : \text{raw data}$$

$$\delta_{1}^{(k)}(a/L) : \text{1-loop deviation}$$

SSF at u = 0.9944 (weak coupling region)

perturbative improvement : no 1-loop order lattice artifact

linear fit

action	Iwasaki	LW	plaquette (ALPHA)
$\sigma(2, u)$	1.106(4)	1.111(4)	1.110(11)

SSF at u = 2.4484 (strong coupling region)

perturbative improvement is implemented

linear fit

action	Iwasaki	LW	plaquette (ALPHA)
$\sigma(2, u)$	3.486(37)	3.409(35)	3.464(40)

Low energy scale ratio $L_{\rm max}/r_0$

Conclusion

SSF tree level O(a) improved Iwasaki action pertutbative improvement is implemented

	Iwasaki	plaquette (ALPHA)
$\sigma(2, u = 0.9944)$	1.106(4)	1.110(11)
$\sigma(2, u = 2.4484)$	3.486(37)	3.464(40)

 \implies universality OK

- Concerning low energy scale ratio, the universality will be confirmed soon.
- For tree level O(a) improved Iwasaki action, perturbative improvement is very efficient reducing the lattice artifact of SSF.

We are going to investigate $N_{\rm f} = 2, 3$ cases