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Why non-perturbative renormalization of
QCD ?

1) QCD has two extremal regimes:
—at high energies quarks are essentially
free (asymptotic freedom)
— at low energies quarks are confined into
hadrons

Can the same Lagrangian describe those
limits at the same time ?

Lattice QCD can provide a first principle
computation to study this question = NP
renormalization of QCD parameters.

This requires exploring distances r s.t.
asymptotic freedom 0.01fm <r <1fm confinement

leading to a multiple scale problem.



2) In addition to the fundamental parameters,
composite operators must be renormalized.
Where are they from ? Effective theories.

For example, weak interactions can be
treated as perturbations to strong interac-
tions = expectation values of composite op-
erators among QCD states.

“Effective Weak Hamiltonians” obtained in-
tegrating out heavy particles (IV,t) from the
Standard Model Lagrangian and expanding
the resulting non-local theory in 1/my.

E.g. NP evolution of 4-fermion operators:
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bare operators renormalized at u ~ 3. ..




3) ... a more practical reason.

Lattice discretizations of QCD preserving
chiral symmetry at finite ¢« have been iIn-
troduced but are still very expensive. For
Wilson fermions chiral symmetry is recov-
ered in the c.l. = at finite a operators be-
longing to different (continuum) chiral mul-
tiplets can mix among themselves !! (lattice
symmetries used to rule out mixings !!)

It's important to compute the mixing coeff.
in a NP way (e.g. JLQCD '97)
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NP renormalization

e Scale dependent quantities:
g2, m + P°
how ? RI-MOM, finite volume recursive
scheme (Schrodinger functional)

e Scale independent quantities:
mixing coeff. for Bk, V¢, A®
how ? Enforcing continuum symmetries at
finite lattice spacing (up to O(a) or O(a?))
through Ward identities.



Scale dependent renormalization

coupling: in a renormalization scheme, a cou-
pling gr(r) can be defined by constraining the
value of a set of renormalized correlation func-
tions at a momentum scale p.

Bare correlation functions are scale indepen-
dent = u dependence of the coupling by RGE

pg—function has a perturbative expansion

B(gr) = —gi(bo + grbr +...) |

solving the RGE equation
(/)
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pt = A e i bygh) (L 4+ O(gR))

where we have introduced as integration con-
stant the RGI quantity A

A= I —1/2bogR (1, 2 \—b1/2b]
i ue (bogi)



concerning operators . ..

One Introduces an intermediate NP renormal-
ization scheme s.t.

<6 | Ointer(ﬂ) ‘Oé> — <6 | Obare|a>tree level
with p* = p* for RI-MOM, u = 1/L for SF.

This allows to define

Ointer(,u) — Zinter(goa N)Obare

CI)inter<,u) = <f|Ointer(:u)|i>

d.ter Nas an explicit dependence on p and an
iImplicit one through the coupling

dq)inter(,u)
S
v

Y(98) = —(Ygr + Ngr + - --) 5
again, a RGI gquantity can be defined
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on the lattice:

q)RGI — ZRGI X (I)bare

- ;I)RGI/(I\)rinterK,ul X ?inter(/{)\/j?bare (gOl X (I)bar.e (gO)
universal, continuum  regularization dep.  bare matrix element

The physical matrix element (typically in the
MS scheme) may be written

CI)—S(/,L) = CDM—5(N)/CI)RGI X CI)RGI c.g. at M= MMy

where dPyg(p)/Prar 1s @ universal, continuum
quantity computable in PT.

Summarising

(I)bare(gO>

CI)inter<,u>

| | | |
100 MeV 1 GeV 10 GeV 100 GeV v o0



Schrodinger functional scheme

finite volume scheme, identifying ! = L.
Z(C,C"

IS the propagation kernel for going from field
conf. Cattimezy=0toaconfC" atzy=1T.

We choose particular boundary fields
C = pdiag(p1, g2, ¢3) and C" = pdiag(¢}, ¢, ¢5)

¢1:77—7T/37 ¢’1:—¢1—4§
P2 = —%777 ¢y = —¢3+2§
¢3:—%"7+§, ¢é:—¢2+2§

these are Abelian classical fields
(the particular choice results in a theorem that
the classical minimum of the action is unique)

Boundary fields induce a background field

By=0, B, = [3300’4-([/—330)0] /L, k=1,2,3



at the tree level order

o8] = 45, {Bsin [ (6 — 0] }

90

the effective action depends explicitly on L
(and on L only if we scale all other dimension-
ful quantities in proportion to L)

= we are led to a renormalized coupling con-
stant computed at a scale p = L™}

INn general, we can compute the derivative of
the effective action as an expectation value

5 = —ppIn [DUe™ = ()

e definition is equally applicable on the lattice
e results in a local (plaquette like) observable

e Well suitable for numerical calculations
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non-perturbative running

We define the step scaling function o(u)

o(u) = g°(2L)] 72(L)=u,m;=0
which describes a finite jump In the scale evo-
lution (e.g. by a factor 2)
= integrated form of g-function.

We want to compute o(u) on the lattice, extrap-
olated to the continuum, for a set of « values.

E(G/L, §2<L7 a)) — g2(2L7 a“) |§2(L,a):u,ami:0

o(*(L) = lm (a/L.g*(L,a)

a = 0.25fm /

—
——

a = 0.125fm
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examples for the c.l. of X
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Starting from the most non-perturbative cou-
pling §*(L....), we evolve downwards n times till
the coupling g*(27"Ly.x) is perturbative (we can
check this I!).
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from g*(2 " L,..) to “g*(n = o0)” [A parameter] we
can use the PT expression for the S5-function

1
ALy = 2"(byd? —by /203 {_ }
( 09 ) exXp 2b0§2

g 1 1 by
e {_/o o [ﬁ(a:) T bé_x] }

with §2 — §2(2_anaX)-
-( Everything in units of a reference scale L.
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To convert to MeV we measure low energy
(hadronic) quantities on a volume (say) 2L.x

e.g. 7o/Lmax, Frlmax---
at this point the A parameter is known in MeV.

What have we done ?

We have checked starting from first principles
that QCD is the right theory to describe the low
energy confining regime (hadronic input) and
the high energy, asymptotically free regime (A
parameter output)

The target is not to have the best estimate of
the A parameter, this can be obtained from
experiments, which however do not provide a
first principle determination (in a sense QCD is
assumed in the analysis of experimental data).

The lattice result “agrees” (it is quenched !!)
with experiments. Ny = 2 is on the way
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Scale independent renormalization

M. Testa, hep-lat/9803147:

e For global symmetries respected by the reg-
ulator the bare Noether currents are finite
and normalized. For symmetries violated by
the regularization even if the symmetry will
be recovered in the continuum, currents re-
quire finite renormalization.

e Order by order in perturbation theory:
power divergent mixings with lower dimen-
sional operators never depend on the renor-
malization scale .

I'll discuss the example of Z, in the SF scheme.
Idea = compute the renormalization constant
by enforcing Chiral Ward Identities on the
renormalized theory (up to O(a) or O(c?)).

14



WI In the continuum

Isospin vector and axial vector variations of the
guark fields

— — 1
ab(x) = g (a), 50(x) = ~d(a)57",
o) = drwsle),  8(e) = Bl

are symmetries of the action for massless

guarks. For the vector and axial currents:
_ 1 — 1
Vua(x> = ¢(fll)%57a¢(flﬁ), AZ(.I) = ¢(x>7u75§7_a¢(37)7

5{"/\/5(@ = —ie™Vi(x), 04Vi(x) = —ie™Al(x),

5{"/142(@ = —ie™ A (x), 04AY () = —ie" V().

Applying a local axial transformation in a re-
gion R, the general (integrated) WI reads

/ 40 (3){(A%(2) Ot Ocnt) = —{(040;n0) Oea)
OR

—|—2m/d4x<P“(x)(’)mt(96xt>
R

where the first and the third term come from
the variation of the action.
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Considering O;,; = A%(y) in the massless case

/a (@) (AL (@) AL(9) Out) = i€™ (V) Out

region R

O ext

on the lattice ...
(Ar)y, = ZaA}, | (Vr), = ZvV}

previous WI (when considering R = region
among hyper-planes at o = yy £ t) reads (after
summing over y and using twice the WI with
no internal fields)

a® N (AR (@) (AR () Ocer) =
| 3 Z VR e:l:t T O( )
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INn the SF

Schrédinger Functional:

j

Lo

S

e QCD on a space-time cylinder L3 x T
42

Ag e periodic b.c.’s in spatial directions
e fixed (Dirichlet) b.c.'s in time direction
T P Oint 1
° Oc == ecde(,)/d(,)e
. 6L6

e O (O'): zero-momentum pseudo—scalar
/ﬁ states at o =0 (xo=T)
u

zg =0 T—?

With this choice of O.,;, the rhs of the inte-
grated WI can be replaced by (hint: if properly
normalized the charge generates infinitesimal
ISsospin rotation)

1 la mya
Introducing the correlator
6
a / a e
faa(zo, yo) = G e (0" Af(x) A (y)O°)

X,y
we rewrite the integrated Wi

Z3 faa(zo,y0) = f1 + Ola)
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Results for O(a) improved Wilson fermions
(Qquenched)
ALPHA: hep-lat/9611015
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Even in small volumes, simulating at zero
quark mass is very expensive. For the N; = 2
case we keep the volume integral in the WI and
we extrapolate to the chiral point (at fixed a)
— talk
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O(a) Improvement programme
a la Symanzik
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Need for O(a) iImprovement

What is the systematic error when computing
quantities at ¢ = 0.1fm ? Using plain Wilson
fermions the vector meson mass my for mpg =
mg [from GF11]

L T T 1 T T 1 | 1T T 1 | L | L
m, [MeV] L i
: quenched QCD
900 — M =11, —
800 — —
700 — —
11 | | L 1 1 1 | L 1 1 1 | L 1 1 1 | L 1 1 1 | 1 1 |

0 0.05 0.1 0.15 0.2
a [fm]

lattice artifacts appear of course already in PT
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Symanzik’s effective theory approach

The lattice action of QCD can be written as an
effective continuum action.

Seff:/d4x [£0+a£1+a2£2+...]

The integration of the momenta from =7/a to
oo generates higher dimensional interaction
terms L.

For Wilson quarks , the symmetries of the ac-
tion restrict £; to be a combination of

O1 = Yio, Fuy

Oy = 9D, Db + 9D, D

O3 = mtrF,, F,

Oy = m {%MDW - @wﬁm}

Os = m2$¢
O3 and Os amount to O(am) corrections to g3
and m, in addition for on-shell quantities

0 = O1 — 09+ 205
0 = O4+ 205
we may drop O, and Oy4, = only O; remains.
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Lattice composite fields can also be repre-
sented as continuum effective fields renormal-
ized atascale u=1/a

Og = Py + ady + a’dy + . ..

example: isovector axial current
a A 1 a
Au(x) = ¢($)%75§T V()

the fields that appear at O(a) are then
| _ 1
(OG)Z = ¢75§T“(7WDV¢ — ¢%V0W75§T“¢

(O7);, = 0, {@%%T%}
1

(Os)), = m@%’Y@T%

again Og Is a mass dependent rescaling of the
operator, Og IS a combination of O; and Og =

(A7) = A% + ¢.ad), P"

discretized on the lattice, has on-shell matrix
elements approaching the c.l. with rate «?, if
the coeff ¢, is properly tuned and the action is
iImproved as well.
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Indeed, a lattice n-point correlation function

Gn(Ty, ..., x,) = (Zg)" (P(x1) ... D(x))e

receives O(a) contrbutions from the composite
fields as and from the action

Gn(ib'l, ce . ,LL’n) = <(D0(£L’1> c e (Do(aﬁn»c

<> wrt L.

Based on this, we want to modify the dis-
cretization of the operators and of the QCD ac-
tion in order to cancel the leading O(a) effects.
We have seen an example for the operator axial

current.
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For the action

S =Sq+Sp+a’ Z cswi ()

T

Fyu(2)()

IS

F,(z) is the lattice expression for the gluon
field strength tensor

Fuu(f) — # {Qu () = Quul)}

with @,,(x) symmetrically defined around z

> >
A Y A Y

< <

> >

How do we tune cgw ?
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Chirality violating terms (like the Wilson term)
are mostly responsible for O(a) effects. Indeed
the SW term is chirality violating. = Restora-
tion of chiral symmetry can be used to fix the
coefficient cgw.

A bare quark mass can be defined by the WI

 (l0,(A7);OB)
2{a|P{O|B)

m is given by an operator identity. It should be
independet from the states |a) and |5) .

In the SF this means that for a choice of g7
and k, we can tune cgw by enforcing m to be
independent from the boundary fields C or C".

csw s.t. Am =m —m' = O(a*)

Remark: I've been a bit sloppy here. m de-
pends also on ¢4 . The condition is imposed
on a quantity M closely related to the WI mass
but independent from cy4.
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quark mass for cgw = 0
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Performing the tuning for various values of 3

k\\i\\H\HH\HH\HH\\HT

0O 0.05 0.1 0.15 0.2
a [fm]

ALPHA: hep-lat/9605038, hep-lat/9609035
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Remarks:

e Improvement helps in reducing lattice arte-
facts, but still extrapolating to the contin-
uum Is necessary

e We discussed Symanzik programme for Wil-
son fermions. The approach is general, but
not the results. In other regularizations the
coefficients have different values. In some
they are even zero (Overlap, domain wall,
tmQCD @ aa =7/2, ...).
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