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Why non–perturbative renormalization of
QCD ?

�� QCD has two extremal regimes:

– at high energies quarks are essentially

free (asymptotic freedom)

– at low energies quarks are confined into
hadrons

Can the same Lagrangian describe those
limits at the same time ?
Lattice QCD can provide a first principle
computation to study this question � NP

renormalization of QCD parameters.

This requires exploring distances � s.t.

������	�
� ����	� ���� �� � � � � �� �	��������

leading to a multiple scale problem.
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�� In addition to the fundamental parameters,
composite operators must be renormalized.
Where are they from ? Effective theories.

For example, weak interactions can be
treated as perturbations to strong interac-
tions � expectation values of composite op-
erators among QCD states.

“Effective Weak Hamiltonians” obtained in-

tegrating out heavy particles (� ,�) from the
Standard Model Lagrangian and expanding

the resulting non–local theory in ����.

E.g. NP evolution of 4-fermion operators:

bare operators renormalized at � � � � � �
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�� � � � a more practical reason.
Lattice discretizations of QCD preserving
chiral symmetry at finite � have been in-
troduced but are still very expensive. For
Wilson fermions chiral symmetry is recov-
ered in the c.l. � at finite � operators be-
longing to different (continuum) chiral mul-
tiplets can mix among themselves !! (lattice
symmetries used to rule out mixings !!)

It’s important to compute the mixing coeff.
in a NP way (e.g. JLQCD ’97)
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NP renormalization

� Scale dependent quantities:

�	�
 ��� �� �

how ? RI-MOM, finite volume recursive
scheme (Schrödinger functional)

� Scale independent quantities:

mixing coeff. for ��
 � �
 ���

how ? Enforcing continuum symmetries at
finite lattice spacing (up to O(�) or O(��))
through Ward identities.
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Scale dependent renormalization

coupling: in a renormalization scheme, a cou-

pling 	���� can be defined by constraining the
value of a set of renormalized correlation func-
tions at a momentum scale �.

Bare correlation functions are scale indepen-
dent � � dependence of the coupling by RGE

�
�	�
��

� ��	�� 


��function has a perturbative expansion

��	�� � �	
�
���� � 	���� � � � �� 


solving the RGE equation

� � ���

�� �� �	

��	�

�



��� � �����������
�
����	

�
��
������

�
��� ���	����

where we have introduced as integration con-
stant the RGI quantity �

� � �
�
����

���������
�
����	

�
��
������

�
�
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concerning operators . . .

One introduces an intermediate NP renormal-
ization scheme s.t.

�����	
�������	 � ���������	
��� �����

with �� � �� for RI-MOM, � � ��� for SF.

This allows to define

��	
����� � ��	
���	�
 ������

��	
����� 
 �� ���	
�������	

��	
�� has an explicit dependence on � and an
implicit one through the coupling

�
���	
�����

��
� ��	��������	
�����

��	��� � ����	
�
� � ��	

�
� � � � �� 


again, a RGI quantity can be defined

���� � �
�
���

��	
���������	
�
�����

������
�
� �

6



on the lattice:

The physical matrix element (typically in the
�� scheme) may be written

������ � ����������� � ���� �� � �� � � ��

where ����������� is a universal, continuum
quantity computable in PT.

Summarising
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Schrödinger functional scheme

finite volume scheme, identifying ��� 
 �.

���
� ��

is the propagation kernel for going from field
conf. � at time �� � � to a conf � � at �� � � .

We choose particular boundary fields

� � �
��
� � �
  �
  �� and � � � �

��
� � 
�

�
  
�

�
  
�

��

 � � ! � "��
  �� � � � �
�	
�

 � � ��
�!
  �� � � � �

�	
�

 � � ��
�! � 	

� 
  �� � � � �
�	
�

these are Abelian classical fields
(the particular choice results in a theorem that

the classical minimum of the action is unique)

Boundary fields induce a background field

�� � �
 �
 � !���
� � ��� ����" ��
 # � �
 �
 �
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at the tree level order

#�!�" � ���

��
�

�
�

�
�
��
�
�
�
��

���
� �� �  ��

��

the effective action depends explicitly on �

(and on � only if we scale all other dimension-

ful quantities in proportion to �)

� we are led to a renormalized coupling con-
stant computed at a scale � � ���

����
��

			
���

� 

������

in general, we can compute the derivative of
the effective action as an expectation value

��
�� � � �

�� ��


$��� � ����� 	

� definition is equally applicable on the lattice

� results in a local (plaquette like) observable

� well suitable for numerical calculations
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non–perturbative running

We define the step scaling function %���

%��� � �	�������������������

which describes a finite jump in the scale evo-
lution (e.g. by a factor 2)
� integrated form of �-function.

We want to compute %��� on the lattice, extrap-

olated to the continuum, for a set of � values.

$����
 �	���
 ��� � �	����
 �������������������

%��	����� � �
�
�����

$����
 �	���
 ���
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examples for the c.l. of $

%��� can then be obtained by fit/interpolation
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Starting from the most non–perturbative cou-

pling �	�������, we evolve downwards & times till
the coupling �	���������� is perturbative (we can
check this !!).

from �	���������� to “�	��� ���” [� parameter] we
can use the PT expression for the �-function

����� � �����	
��������

�
� ���

�
�

�

���	
�

�

� ���

�
�

� �

�

��


�

����
�

�

���
� �

��

����

��

with �	� � �	����������.
:-( Everything in units of a reference scale ����
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To convert to MeV we measure low energy
(hadronic) quantities on a volume (say) �����

�� � �������
 '	���� � � �

at this point the � parameter is known in MeV.

What have we done ?

We have checked starting from first principles
that QCD is the right theory to describe the low
energy confining regime (hadronic input) and
the high energy, asymptotically free regime (�
parameter output)

The target is not to have the best estimate of
the � parameter, this can be obtained from
experiments, which however do not provide a
first principle determination (in a sense QCD is
assumed in the analysis of experimental data).

The lattice result “agrees” (it is quenched !!)
with experiments. (� � � is on the way � talk.

basic reference: ALPHA, hep-lat/9810063
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Scale independent renormalization

M. Testa, hep-lat/9803147:

� For global symmetries respected by the reg-
ulator the bare Noether currents are finite
and normalized. For symmetries violated by
the regularization even if the symmetry will
be recovered in the continuum, currents re-

quire finite renormalization.

� Order by order in perturbation theory:
power divergent mixings with lower dimen-
sional operators never depend on the renor-
malization scale �.

I’ll discuss the example of � in the SF scheme.
Idea � compute the renormalization constant
by enforcing Chiral Ward Identities on the
renormalized theory (up to O(�) or O(��)).
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WI in the continuum

Isospin vector and axial vector variations of the
quark fields

Æ��)��� �
�
�*

�)���
 Æ��)��� � �)���
�

�
* �


Æ��)��� �
�
�*

��!)���
 Æ��)��� � )����!
�

�
* �


are symmetries of the action for massless
quarks. For the vector and axial currents:

 �
� ��� � )�����

�

�
* �)���
 ��

���� � )������!
�

�
* �)���


Æ�� 
�
� ��� � ��+��� �

� ���
 Æ��
�
� ��� � ��+

�����
����


Æ���
�
���� � ��+�����

����
 Æ���
�
���� � ��+

��� �
� ����

Applying a local axial transformation in a re-
gion ,, the general (integrated) WI reads�

��

�%������
�
������������	 � ���Æ�����������	

���

�
�

����� ������������	

where the first and the third term come from

the variation of the action.
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Considering ���� � ��
��-� in the massless case�

��

�%������
�
�����

�
��-�����	 � �+���� �

� �-�����	

on the lattice . . .

����
�
� � ���

�
� 
 ���

�
� � �� 

�
�

previous WI (when considering , � region
among hyper-planes at �� � -� � �) reads (after
summing over � and using twice the WI with
no internal fields)

�"
�
���

+��������
�
��������

�
��-�����	 �

��
�
�

�����
�
��-�����	 � %���
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in the SF

With this choice of ����, the rhs of the inte-
grated WI can be replaced by (hint: if properly

normalized the charge generates infinitesimal
isospin rotation)

�� � �
�

��"
������	

introducing the correlator

������
 -�� � �
�"

&�"

�
���

+���+���������
�����

�
��-��

�	

we rewrite the integrated WI

���������
 -�� � �� � %���
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Results for O(�) improved Wilson fermions
(quenched)

ALPHA: hep-lat/9611015

Even in small volumes, simulating at zero
quark mass is very expensive. For the (� � �

case we keep the volume integral in the WI and
we extrapolate to the chiral point (at fixed �)
� talk
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O(�) improvement programme
à la Symanzik
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Need for O(�) improvement

What is the systematic error when computing
quantities at � � ����� ? Using plain Wilson
fermions the vector meson mass �� for ��� �

�� [from GF11]

lattice artifacts appear of course already in PT
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Symanzik’s effective theory approach

The lattice action of QCD can be written as an
effective continuum action.

.�# �

�
���

�
�� � ��� � ���� � � � �

�

The integration of the momenta from "�� to

� generates higher dimensional interaction
terms �
.

For Wilson quarks , the symmetries of the ac-
tion restrict �� to be a combination of

�� � )�%��'��)

�� � )/�/�) � )
��
/�
��
/�)

�� � ��'��'��

�� � �
�
)��/�) � )��

��
/�)

�
�! � ��))

�� and �! amount to O(��) corrections to 	��
and �, in addition for on-shell quantities

� � �� � �� � ��!

� � �� � ��!

we may drop �� and ��, � only �� remains.
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Lattice composite fields can also be repre-
sented as continuum effective fields renormal-
ized at a scale � � ���

��# � �� � ��� � ���� � � � �

example: isovector axial current

��
���� � )������!

�

�
* �)���

the fields that appear at O(�) are then

��"�
�
� � )�!

�

�
* �%��/�) � )

��
/ �%���!

�

�
* �)

��$�
�
� � ��

�
)�!

�

�
* �)

�

��%�
�
� � �)���!

�

�
* �)

again �% is a mass dependent rescaling of the
operator, �" is a combination of �$ and �% �

����
�
� � ��

� � 0�����
�

discretized on the lattice, has on-shell matrix
elements approaching the c.l. with rate ��, if
the coeff 0� is properly tuned and the action is
improved as well.
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Indeed, a lattice &-point correlation function

1����
 � � � 
 ��� � ��&�
������� � � ������	�

receives O(�) contrbutions from the composite
fields as and from the action

1����
 � � � 
 ��� � ������� � � �������	�

��

�
��-������� � � ����������-�	�

��

��

��

������� � � �����
� � � �������	�

��	 wrt ��.

Based on this, we want to modify the dis-
cretization of the operators and of the QCD ac-
tion in order to cancel the leading O(�) effects.
We have seen an example for the operator axial
current.
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For the action

. � .� � .' � �!
�
�

0��)���
�

'
�'�����)���

�'����� is the lattice expression for the gluon
field strength tensor

�'����� �
�

(��
�2������2������

with 2����� symmetrically defined around �

How do we tune 0�� ?
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Chirality violating terms (like the Wilson term)

are mostly responsible for O(�) effects. Indeed
the SW term is chirality violating. � Restora-
tion of chiral symmetry can be used to fix the
coefficient 0��.
A bare quark mass can be defined by the WI

� �
���������

�
����	

����� �
����	

m is given by an operator identity. It should be
independet from the states ��	 and ��	 .

In the SF this means that for a choice of 	��
and 3, we can tune 0�� by enforcing � to be
independent from the boundary fields � or � �.

0�� ���� )� � ���� � �����

Remark: I’ve been a bit sloppy here. � de-
pends also on 0� . The condition is imposed
on a quantity 4 closely related to the WI mass
but independent from 0�.
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quark mass for 0�� � �

quark mass for 0�� properly tuned
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Performing the tuning for various values of �

What about �� ?

ALPHA: hep-lat/9605038, hep-lat/9609035
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Remarks:

� Improvement helps in reducing lattice arte-
facts, but still extrapolating to the contin-
uum is necessary

� We discussed Symanzik programme for Wil-
son fermions. The approach is general, but
not the results. In other regularizations the
coefficients have different values. In some
they are even zero (Overlap, domain wall,
tmQCD @ � � "��, . . . ).
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