Unquenched QCD project by CP-PACS and JLQCD collaboration

Tomomi Ishikawa (CCP, Univ. of Tsukuba) for CP-PACS and JLQCD collaboration

tomomi@rccp.tsukuba.ac.jp

Winter School and Workshop on Lattice Gauge Theory "Non-perturbative improvement and renormalization" @ Center for Computational Physics, University of Tsukuba February 2-4, 2004

Introduction

Light hadron spectrum

- Direct test of QCD at low energy scale
- Determination of fundamental parameters quark masses, etc.

□ Systematic studies by CP-PACS and JLQCD collab.

- quenched QCD
 - plaquette gauge + Wilson quark (CP-PACS, 2003)
 - ◆ RG-improved gauge + clover quark (tad.imp. C_{SW}) (CP-PACS, 2001)
 - systematic deviation from experiment
- $\square N_f = 2 \text{ QCD}$
 - RG-improved gauge + clover quark (tad.imp. c_{SW}) (CP-PACS, 2001)
 - plaquette gauge + clover quark (NP C_{SW}) (JLQCD, 2003)
 - → deviation is reduced
- Next (and final) step : $N_f = 3 \text{ QCD}$

Computing facilities

	machinas	GF/ node	total		for LQCD	
	machines		# Node	GFlops	# Node	GFlops
	SR8000/F1 @KEK	12	100	1200	~ 64	~ 768
	CP-PACS @CCP, U.Tsukuba	0.3	2048	614	2048	614
	SR8000/G1 @CCP, U.Tsukuba	14.4	12	173	12	173
	VPP5000 @SIPC, U.Tsukuba	9.6	80	768	~ 24	~ 230
The Earth Simulator Center	Earth Simulator @JAMSTEC	64	640	40960	~ 10	~ 640

- Introduction
- Simulation parameters
- Analysis
- Meson spectrum
- Quark masses
- Finite size effect
- Conclusions and future plans

Simulation parameters

- with degenerate up and down quarks and strange quark
- □ Algorithm
 - dynamical u, d, s quarks odd flavor algorithm is needed.
 - HMC for ud quarks
 - PHMC for strange quark
- Lattice action
 - gauge : RG improved action
 - **quark :** non-perturbatively $\mathcal{O}(a)$ improved Wilson action
- $\beta = 1.9$, $c_{SW} = 1.715$, $(a^{-1} \sim 2GeV)$

Collector States

 \Box Lattice size: $20^3 \times 40$ ($La \simeq 2.0 fm$)

small for baryons ____> concentrate on meson sector

• 2 strange quark masses $m_{PS,SS}/m_{V,SS} \sim 0.71, 0.77$ $(m_{\eta_s}/m_{\phi} = 0.68 : \text{ChPT})$

Statics

- 5000 traj at each simulation point
- measure hadron masses every 10 trajectories
- statistical error jack-knife with bin size of 100 traj

Analysis

chiral extrapolation

fitting functions (VWI)

$$\begin{split} m_{PS}(K_{ud}, K_s; K_{val,1}, K_{val,2})^2 \\ &= B_S^{PS}(2m_{ud}^{VWI} + m_s^{VWI}) + B_V^{PS}(m_{val,1}^{VWI} + m_{val,2}^{VWI}) \\ &+ D_{VS}^{PS}(2m_{ud}^{VWI} + m_s^{VWI})(m_{val,1}^{VWI} + m_{val,2}^{VWI}) \\ &+ C_V^{PS}((m_{val,1}^{VWI})^2 + (m_{val,2}^{VWI})^2) + 2D_{VV}^{PS}m_{val,1}^{VWI}m_{val,2}^{VWI} \\ m_V(K_{ud}, K_s; K_{val,1}, K_{val,2}) \\ &= A^{VK} + B_S^{VK}(2m_{ud}^{VWI} + m_s^{VWI}) + B_V^{VK}(m_{val,1}^{VWI} + m_{val,2}^{VWI}) \\ &+ D_{VS}^{VK}(2m_{ud}^{VWI} + m_s^{VWI})(m_{val,1}^{VWI} + m_{val,2}^{VWI}) \\ &+ D_V^{VK}(2m_{ud}^{VWI} + m_s^{VWI})(m_{val,1}^{VWI} + m_{val,2}^{VWI}) \\ &+ C_V^{VK}((m_{val,1}^{VWI})^2 + (m_{val,2}^{VWI})^2) \end{split}$$

$$m_{ud}^{VWI} = \frac{1}{2} \left(\frac{1}{K_{ud}} - \frac{1}{K_c} \right), \quad m_s^{VWI} = \frac{1}{2} \left(\frac{1}{K_s} - \frac{1}{K_c} \right), \quad m_{val,i}^{VWI} = \frac{1}{2} \left(\frac{1}{K_{val,i}} - \frac{1}{K_c} \right)$$

fitting functions (AWI)

$$m_{PS}(K_{ud}, K_s; K_{val,1}, K_{val,2})^2 = B_V^{PS}(m_{val,1}^{AWI} + m_{val,2}^{AWI}) + D_{VS}^{PS}(2m_{ud}^{AWI} + m_s^{AWI})(m_{val,1}^{AWI} + m_{val,2}^{AWI}) + C_V^{PS}((m_{val,1}^{AWI})^2 + (m_{val,2}^{AWI})^2)$$

$$m_V(K_{ud}, K_s; K_{val,1}, K_{val,2}) = A^{VK} + B_V^{VK} (2m_{ud}^{AWI} + m_s^{AWI}) + D_{VS}^{VK} (2m_{ud}^{AWI} + m_s^{AWI}) (m_{val,1}^{AWI} + m_{val,2}^{AWI}) + C_V^{VK} ((m_{val,1}^{AWI})^2 + (m_{val,2}^{AWI})^2)$$

$$m^{AWI} = \frac{\langle 0|\nabla_4 A_4|PS\rangle}{2\langle 0|P|PS\rangle}$$

\Box Input to fix m_{ud} and m_s

K-input

 $\frac{m_{PS,LL}(K_{ud},K_s)}{m_{V,LL}(K_{ud},K_s)} = \frac{m_{\pi}}{m_{\rho}}, \quad \frac{m_{PS,LS}(K_{ud},K_s)}{m_{V,LL}(K_{ud},K_s)} = \frac{m_K}{m_{\rho}}$

o ϕ -input

 $\frac{m_{PS,LL}(K_{ud},K_s)}{m_{V,LL}(K_{ud},K_s)} = \frac{m_{\pi}}{m_{\rho}}, \quad \frac{m_{V,SS}(K_{ud},K_s)}{m_{V,LL}(K_{ud},K_s)} = \frac{m_{\phi}}{m_{\rho}}$

 \square Input to fix a^{-1} — m_{ρ}

 $a^{-1} = \begin{cases} 1.98(4) \ GeV \ (K-input) \\ 1.98(4) \ GeV \ (\phi-input) \end{cases}$

Meson spectrum

□ J parameter

$$J = m_V \frac{dm_V}{dm_{PS}^2} \quad \left(\text{at } \frac{m_{PS}}{m_V} = \frac{m_K}{m_{K^*}} \right) \simeq m_{K^*} \frac{m_{K^*} - m_{\rho}}{m_K^2 - m_{\pi}^2} = 0.48(2)$$

 quenched smaller than experiment
 2-flavor deviation is reduced
 3-flavor consistent with experiment

Light meson masses

- At $a \sim 0.1 \text{ fm}$
 - consistent with experiment
 - K-input and ϕ -input agree
- □ NP C_{SW}
 - small scaling violation (?)

The consistency with experiment maintains even in the continuum limit.

VWI quark masses

• define $K_{c,L}(K_s)$ \longleftrightarrow $m_{PS,LL}(K_{c,L},K_s) = 0$

 $\Box K_{c,L}(K_s) > K_c$ (due to lack of chiral symmetry)

 $\searrow K_{ud,phys} > K_c \implies \text{negative } m_{ud}^{VWI}$ • define m_q^{VWI} as $m_q^{VWI} = \frac{1}{2} \left(\frac{1}{K_q} - \frac{1}{K_{c,L}(K_{s,phys})} \right) > 0$

- AWI quark masses
 - no such problems as in VWI quark masses
- renormalization

MF-improved 1-loop matching with MS at $\mu = a^{-1}$

• 4-loop running to $\mu=2~GeV$

Contractor and

Assuming small scaling violation in m_q^{AWI} , in the MS scheme at $\mu = 2 \ GeV$ $m_{ud} = 3.10(7) MeV$ $m_s = 78.7(3.3) MeV$ $m_s/m_{ud} = 25.4(1.2)$ \square m_{ud}, m_s : 10-15% smaller than in $N_f = 2$ $\square m_s/m_{ud}$: consistent with 1-loop ChPT, 24.4(1.5)

Finite size effect

Comparison with $16^3 \times 32$ result

 $16^3 \times 32$ lattice, $\beta = 1.9$, 3000 traj (T.Kaneko et al., Lat 03)
results on $20^3 \times 40$ lattice

 m_{ud} : 10% larger than on $16^3 \times 32$ lattice

 m_s : 4% larger than on $16^3 imes 32$ lattice

	$20^3 \times 40$	$16^3 \times 32$
m_{ud}	3.10(7)	2.89(6)
m_s	78.7(3.3)	75.6(3.4)
m_s/m_{ud}	25.4(1.2)	26.2(1.0)

More analysis of the finite size effect is needed.

Contractor and and

Conclusions and future plans

- □ $N_f = 3$ QCD project of CP-PACS+JLQCD
 - $20^3 \times 40$ lattice, $a \sim 0.1$ fm
 - RG-improved gauge action + NP improved clover quark
- Light meson spectrum
 - $^{\tt consistent}$ with experiment already at $~a\sim 0.1~{
 m fm}$

Quark mass

10-15% smaller than in $N_f = 2$

Contraction of the

Next

- other lattice spacing (investigation of scaling violation)
- finite size effect