第5回「計算科学による新たな知の発見・統合・創出」 シンポジウム

全球・領域気象予測モデルを用いた 地球環境研究と将来予測

WRF

140°E

139°E

[deg C]

34

32

30

28

24

22

20

141°E

全球非静力学モデルNICAM

• NICAM (Satoh et al. 2008)

非静力学方程式系

上昇流 w を直接計算

- 従来のAGCMでは、高解像度での計算に限界

積雲の上昇流を表現可能 降水システムの再現性が 高まると期待 極問題が発生しない スペクトル変換を必要 としない

十 正20面体格子

全球準一様格子

全球雲解像を目的としたモデル

NICAM

(by Satoh et al. 2008)

NICAM AGCM

Original Icosahedron

Glevel-0

(by Satoh and Tomita)

Glevel-1

Glevel and resolution

- Glevel-5: $\Delta x=224$ km
- Glevel-6: $\Delta x=112$ km
- Glevel-7: $\Delta x=$ 56km
- Glevel-8: $\Delta x= 28$ km
- Glevel-9: $\Delta x= 14$ km
- Glevel-10: $\Delta x = 7 \text{km}$
- Glevel-11: $\Delta x=3.5$ km

全球非静力学モデルNICAM

Rlevel-0

Rlevel-1

- •2個の三角形を合わせて1つの領域。
- Rlevelを上げることで、並列性を高める。

NICAMジョブの経過状況

- O PACS-CS で正常終了
- PACS-CS で異常終了
- ◎ T2K-Tsukuba で正常終了

Core 数

Glevel	km	1	10	40	64	160	256	512	2560
5	224	0	0	0	0	0			
6	112	Jan 2	2007			0	0		
7	56					0	0		
8	28					0	\bullet		
9	14						Ô	Ø	Ô
10	7.0								Ø
11	3.5							Jan 2009	

NICAM running at CCS

NICAM 7km

NICAM running at CCS, University of Tsukuba

NICAM running at CCS, University of Tsukuba

NICAM glevel-9 2008062100 Z

500 hPa Omega NICAM 2008070500Z+78HR

290°

1000 hPa Height

NICAM 2008070500Z+78HR

Extra-tropical Cyclones

- Life cycle
- Warm and cold fronts

図1

Arctic Cyclones SLP

10 day integration starting From June 21, 2008 NICAM g18 and g19 r102-n512

500 hPa Height

NICAM 2008062100Z+0HR

500 hPa Height

NICAM 2008062100Z+0HR

GMT 2008 Dec 3 16:07:23 U.Tsukuba HLT g9r4n512

Relative Vorticity 2008062218Z

Target Cyclone 82.5°N/166.25°E

500 hPa S. Humidity

NICAM 2008062100Z+0HR

GMT 2009 Jan 30 22:26:44 CCS g9r4n256

NICAM gl-8 Temperature Anomalies 2008062100Z+48HR

初期値をどうするか

- 現在は、JMA-GSM解析値やNCEP/NCAR再解析
 値を正20面体格子に内挿。
- 初期値敏感性のため、数値予報に悪影響。NICAM

NICAMに 最適な 初期 値では ない

目的

①NICAMにEnsemble Kalman Filter (EnKF, Evensen 1994)を適応して、機能 するかどうか。

②EnKFを使うことで、NICAMに最適
 で、精度の高い初期値を作成。

(Satoh et al. 2008)

支配方程式	完全圧縮性非静力学方程式系
水平解像度	Glevel-5 (224 km)
鉛直層数	40 層
予報変数	P, T, V1, V2, V3, W, Qv, Qr, Qc
観測変数	P, T, V1, V2, V3, Qv
メンバー数	40メンバー
ステップ数	120(6時間間隔で30日積分)

Analysis RMSE (Z500 [m])

Analysis Spread (Z500 [m])

Analysis RMSE (U500 [m/s])

Analysis Spread (U500 [m/s])

2008年度の成果 (WRF)

- 将来の詳細な気候予測のために、過去20年間(1985-2004 年)を対象に、空間分解能20kmのWRFを用いて、日本域の 気候シミュレーションを実施した。さらには、過去5年間(2002 年から2006年)の夏を対象に、空間分解能4kmのWRFモデ ルを用いて、首都圏を対象としたさらに詳細なシミュレーショ ンを実施した。その結果、領域気象モデルWRFは、天気予 報のような短期間の数値予報・シミュレーションだけでなく、 気候シミュレーションにも有用なツールとなりえることがわ かった。
- 都市豪雨に対する都市のヒートアイランド現象の影響を評価 するために、2001年から2007年の過去7年間の8月を対象 に、空間分解能4kmのWRFモデルを用いて、都市の感度実 験(都市あり、都市なし実験)を実施した。その結果、都市が 降水に影響をおよぼしている可能性を肯定まではいかなくて も、少なくとも強く否定できないことが示された。

日本域気候シミュレーションの結果: 8月の地上気温の20年平均値、1985~2004年の8月

20km-WRF

首都圏気候シミュレーションの結果: 午後3時の地上気温 2002年08月平均

大手町における地上気温の日変化 2002年8月平均

Amedasは観測値、slabは平板都市モデル利用時、noahは陸面モデル利用時、 Ucm_Ahoffは都市キャノピーモデル利用時、ucm_Ahonは都市キャノピーモデル に人工排熱を考慮した場合の結果 本研究での感度実験(都市を草地にかえたシミュレーション)

土地利用のイメージ

水平格子間隔 4km

WRFによって計算された2001年から2007年までの8月の積算降水量:都市あり実験と都市なし実験の差(都市あり降水量 – 都市なし 降水量)

まとめ

- NICAM:
- ESでしか走らないとされた全球雲解像モデルNICAMがCCS で走った。Glevel-10で、ESはT2K-Tsukubaの8倍速い。
- NICAMで再現された熱帯低気圧、温帯低気圧、北極低気圧の構造を比較した。ウォームコアの存在。
- NICAM -LETKFを開発した。パーフェクトモデル実験では解 析誤差は観測誤差の1/5に減少した。

• WRF

- WRFの長期ランにより領域気候の再現を可能にした。
- 都市の影響で都市型豪雨の増大が実験的に確かめられた。

End Thanks

Cluster part and File Server part

Computation Nodes (70 racks)

648 node (quad-core x 4socket / node) Opteron "Barcelona" B8000 CPU 2.3GHz x 4-inst./clock x 4core x 4socket = 147.2 GFLOPS / node = 95.3 TFLOPS / system 20.7 TB memory / system 800 TB (physical 1PB) RAID-6 Luster cluster file system Infiniband x 2 Meta-data servers and File servers are all duplicated tandem ⇒ high fault tolerance

File Sever (Disk Drive, 5 racks)

Interconnection network of T2K-Tsukuba

What is T2K-Tsukuba?

- A supercomputer in University of Tsukuba under operation by Center for Computational Sciences
- "T2K" represents the alliance of three national universities in Japan: Tsukuba, Tokyo and Kyoto, for supercomputer research, design, procurement and operation
- A very large scale PC cluster with 10,368 cores and 95TFLOPS of peak performance
- Each computation node consists of quad-socket AMD Opteron (Barcelona) with quad-core (totally 16 cores / node)
- Interconnection network with full-bisection bandwidth Fat-Tree with quad-rail of Infiniband ConnectX
- Operation duration: June 2008 May 2013

500 hPa S. Humidity

NICAM 2008062100Z+0HR

Glevel=9, 14km

500 hPa S. Humidity

NICAM 2004060100Z+0HR

Glevel=10, 7km GMT 2009 Feb 4 11:21:23 CCS g10r4n256

GMT 2009 Jan 30 22:26:44 CCS g9r4n256

Tropical Cyclone

• Life cycle of Typhoon

Sea-level Pressure (hPa) 2005090512 + 00 hr (JMA/GPV/RSM)

NICAM gl-8 Height (m) and Wind (m/s) at 700 hPa 2008070500Z+78HR

0 10 20 30 40 50

Hurricane in NICAM

NICAM gl-8 1000 hPa Height 2008070500Z+78HR

NICAM gl-8 300 hPa Temperature Anomalies 2008070500Z+78HR

NICAM gl-8

Temperature Anomalies 2008062100Z+24HR

NICAM gl-9 1000 hPa Height 2008062100Z+48HR

NICAM gl-9 500 hPa S. Humidity 2008062100Z+48HR

NICAM gl-9 500 hPa Temperature Anomalies 2008062100Z+48HR

NICAM gl-9 200 hPa Temperature Anomalies 2008062100Z+48HR

Summary

- Tropical cyclone
 - Dynamical Instability with vertical heat transport
 - Warm core in mid-troposphere by latent heat
- Extra-tropical cyclone
 - Dynamical Instability with meridional heat transport
- Arctic cyclone
 - Vorticity transfer from the polar cortex
 - Warm core in lower stratosphere by subsidence
- NICAM runs at CCS
 - ES vector machine is 8 times faster than T2K

NICAMの出力変数

- 01 ml_dh : diabatic heating rate (cloud microphysics) [K/s]
- 02 ml_pres : pressure [Pa]
- 03 ml_qc : cloud water mixing ratio (microphysics) [kg/kg]
- 04 ml_qi : cloud ice mixing ratio [kg/kg]
- 05 ml_qr : rain mixing ratio [kg/kg]
- 06 ml_qs : snow mixing ratio [kg/kg]
- 07 ml_qv : water vapor mixing ratio [kg/kg]
- 08 ml_rh : relative humidity [frac.]
- 09 ml_rho : density (all species) [kg/m^3]
- 10 ml_tem : temperature [K]
- 11 ml_ucos: zonal velocity (multiplied by cos(lat)) [m/s]
- 12 ml_vcos: meridional velocity (multiplied by cos(lat)) [m/s]
- 13 ml_w : vertical velocity [m/s] [SINGLE LEVEL -- 27 variables]
- 14 sl_albedo : albedo [frac.]
- 15 sl_cld_frac : cloud fraction [frac.]
- 16 sl_cldi : column integrated solid water [kg/m^2]
- 17 sl_cldw : column integrated liquid water [kg/m^2]
- 18 sl_evap : evaporation rate [kg/m^2/s]
- 19 sl_lw_toa : outgoing long-wave flux at TOA [W/m^2]
- 20 sl_lw_toa_c : outgoing long-wave flux at TOA (clear sky) [W/m^2]
- 21 sl_ps : surface pressure [Pa]
- 22 sl_q2m : 2 m water vapor mixing ratio [kg/kg]
- 23 sl_slh : surface latent heat flux [W/m^2]
- 24 sl_slwd : surface long-wave radiation (downward) [W/m^2]
- 25 sl_slwu : surface long-wave radiation (upward) [W/m^2]
- 26 sl_ssh : surface sensible heat flux [W/m^2]
- 27 sl_sswi : surface short-wave radiation (downward/incident) [W/m²]
- 28 sl_sswr : surface short-wave radiation (upward/reflected) [W/m^2]
- 29 sl_sw_toai : downward short-wave radiation at TOA [W/m^2]
- 30 sl_sw_toar : upward short-wave radiation at TOA [W/m^2]
- 31 sl_sw_toar_c : upward short-wave radiation at TOA (clear sky) [W/m^2] sl_t2m : 2 m temperature [K]
- 32 sl_tauucos : surface stress by zonal velocity (multiplied by cos(lat)) [N/m^2]
- 33 sl_tauvcos : surface stress by meridional velocity (multiplied by cos(lat)) [N/m^2]
- 34 sl_tem_atm : mass weighted column averaged temperature [K]
- 35 sl_tem_sfc : surface temperature [K]
- 36 sl_tppn : surface precipitation rate [kg/m^2/s] sl_ucos10m : 10 m zonal velocity (multiplied by cos(lat)) [m/s]
- 37 sl_vap_atm : precipitable water [kg/m^2] sl_vcos10m : 10 m meridional velocity (multiplied by cos(lat)) [m/s]

ファイル数の上限:1億ファイル

50変数×40領域×40メンバー×120ステップ =960万ファイル

10回の実験でファイル数は約1億個

日本域気候シミュレーションの結果: 地上気温の20年平均値、1985~2004年

20km-WRF

