Simulation Soltware for 第一回「計算科学による新たな知の発見・統合・創出」シンポジウム - PACS-CSプロジェクトとFIRSTプロジェクト -

筑波大学計算科学研究センター 2005年2月16日

ナノ物質の構造と機能のシミュレーション

-戦略的基盤ソフトウェアの開発-

大野隆央

独立行政法人 物質・材料研究機構 計算材料科学研究センター

戦略的基盤ソフトウェア開発プロジェクト

戦略的基盤ソフトウェア開発プロジェクト

グループ名	2003年6月公開ソフトウェア		
「代表ソフトウエア名」	名称	機能	
次世代量子化学計算 「Protein DF」	Protein DF	大規模タンパク質の 量子化学計算	
タンパク質・化学物質 相互作用解析 「ABINIT-MP BioStation」	ABINIT-MP BioStation Viewer	非経験的FMO法による 相互作用解析・可視化	
ナノシミュレーション 「CHASE-3PT」	PHASE ※2003年9月公開	第一原理擬ポテンシャル バンド計算	
次世代流体解析 「FrontFlow」	FrontFlow-blue FrontFlow-red	ターボ機械・流体音解析 燃焼・混相流解析	
次世代構造解析 「NEXST」	NEXST-FMM-Fracture2D NEXST-MPS-Solid2D NEXST-FEM-Solid	2次元FMM破壊力学解析 2次元MPS法構造解析 3次元有限要素法構造解析	
統合プラットフォーム 「RINDOW」	PSEワークベンチ	PSE対応ワワークベンチ編集	
HPCミドルウエア 「HPC-MW」	hpc-mw-solver-test	並列反復法ソルバー のテスト	

Semulate off. South and the second

A-3 (* * || # || # || # || # || # | # | #

ナノデバイス戦略: Paradigm shift

The late to the second of a second

ナノテクノロジーのためのシミュレーション

ナノ構造の創成・制御、機能の解析・予測 のための基盤シミュレーション技術 ナノスケール構造の複合体 ● 大規模系

- マルチな空間・時間スケール
- マルチフェノメナ

量子論的大規模解析

第一原理手法:電子状態の高精度解析 (N³に比例) オーダーN 第一原理手法:計算量が原子数に比例 Hybrid法:量子力学 - 古典力学 - 連続体力学

物性·機能解析

量子伝導、誘電的·磁気的·光学的特性、機械的特性

逆問題解析

特性・機能から原子構造を決定(最適化法) コンビナトリアル計算科学

平成17年2月28日

密度汎関数理論

1985: Car & Parrinello 法 ____ 大規模計算へのマイルストーン

Si(111)-(7x7)表面

DASモデル(Dimer-Adatom-Stacking fault) (高柳1985) nmサイズの表面構造

第一原理計算による DAS構造の検証 (1992)

DAS構造の安定性 STM像計算と実験との一致

実効700Si原子

ナノシミュレーションシステム CHASE-3PT

11

平成17年2月28日

Samula as the second second

SALL + 1 + + + + + + + + + + + +

基盤プログラム: PHASE, CIAO, ABCAP

基盤プログラム: PHASE, CIAO, ABCAP

- 擬ポテンシャルによる第一原理計算プログラム (PHASE)
 - 理論:密度汎関数理論
 - 基底関数:平面波(PW)
 - 交換相関汎関数:LDA, GGA
 - 擬ポテンシャル: Ultrasoft, Troullier-Martins (CIAO)

● 全電子による第一原理計算プログラム (<u>ABCAP</u>)

- 理論:密度汎関数理論+GW近似
- 基底関数:FLAPW
- 交換相関汎関数:LDA, GGA, LDA+U

平成15年9月: プログラム公開 (基盤プログラム) 平成16年6月: PHASE機能拡張 平成17年6月: プログラム公開予定 (UVSOR, Hybrid)

http://www.fsis.iis.u-tokyo.ac.jp/theme/nanoscal/

擬ポテンシャル・データベース

2005年2月15日現在 118元素作成

13

基盤プログラム: PHASE, CIAO, ABCAP

PHASE, ABCAP, CIAO

THE STORE STORES AND A REAL OF

酸化Si(001)表面の等電子密度面とSTM像 PHASE

強磁性相LaMnO3のバンド構造

ΜΤΑ Λ ΓΔΧΖΜΣΓ

Е,

ABCAP

LaMn0₃

0.8 F

0.6

0.4

0.2

0.0

-0.2

(Ry)

Energy

ナノプロセス解析システム

極微細加工

WINDOW BURNING STRATEGICS

 エピタキシャル成長:
 CVD成長

 エッチング
 :
 Si表面、HfO₂表面

 酸化膜形成
 :
 SiO₂/Si、HfO₂/Si

 シリサイド形成
 :
 TiSi₂/Si

 窒化膜形成
 :
 SiON/Si

Ge/Si Hut clusters

GeH4 GS-MBE成長

16

SiO2に代わる高誘電率ゲート絶縁膜材料の探索

STATISTICS TO A STATE AND A STATE

誘電応答: HfO2, Al2O3

UVSOR

高誘電体HfO₂, Al₂O₃の誘電率

A REAL POINT OF THE REAL POINT

5 (* * 1414 T> * K.K. * *

ε _{ave}	Lattice	Electron	Total
Cubic	25.46	5.23	30.69
Tetragonal	39.17	5.04	44.21
Monoclinic	11.14	4.74	15.88
Exper. (mon.)		~5	16~25

 α -Al₂O₃結晶

٤ _{ave}	Lattice	Electron	Total
present	6.86	2.87	9.73
Exper.		3.06	9.68
		3.17	9.25

高誘電体設計: Ce酸化物エピタキシャル膜

UVSOR

The state of the second strate of the

平成17年2月28日

- (1) CeO₂膜の誘電率 (= 52) > バルク値 (26)
- (2) CeO₂膜の格子定数aが0.6%増大 => Δε = 1.3
- (3) 酸素欠損の存在(Ce₂O₃?) => 格子誘電率の微減

h-Ce₂O₃

Theory

[*] N. I. Santha et al., J. Am. Ceram. Soc., 87 (2004) 1233.

CeO₂

CeO₂ Experiment

c-Ce₂O₃

格子定数a増加による格子誘電率変化

CeO2の格子誘電率

実験 単一分子の伝導特性? 電極 - 分子接点構造?

計算

開放・非平衡系 (vs. 周期系) 解析手法の確立?

Lippmann-Schwinger方程式

N. Lang, Phys. Rev. B 52, 5335 (1995) 広瀬、塚田, Phys. Rev. Lett. 72 150 (1994)、小林、塚田

非平衡Green 関数理論(NEGF)

J. Taylor, Phys. Rev. B 63, 245407 (2001) M. Brandbyge, Phys. Rev. B 65, 165401 (2002)

H. J. Choi and J. Ihm, Phys. Rev. B 59, 2267 (1999) 藤本 · 広瀬, Phys. Rev. B67, 195315 (2003)

量子伝導: CNT伝導

TRANS

amilianth said and (a)

DNA: Poly(dG)-poly(dC)

Semeral and the second second

2

CNTを利用したNEMS

CNT

A TOTAL STRATE TO A DAY OF

ナノ構造接触

交差したCNTの接触

28

分子ギアー: 提案

分子 screw gear

A BARTIN TO BE A RANGED

(* * * * * * * * * * * *

分子 bearing

K,Miura, et al, PRL 90, 055509 (2003)

Takagi, Uda, and Ohno: JCP (in press)

ナノシミュレーションシステム CHASE-3PT

30

平成17年2月28日

A REAL PROPERTY AND AND

