Applications of Chiral Perturbation theory to lattice QCD (III)

How to extrapolate from what we can simulate to physical answers

Stephen R. Sharpe

University of Washington
General strategy

Proceed in two steps: [Sharpe & Singleton]

Lattice Lagrangian:
Wilson, tm, staggered

Continuum effective Lagrangian:
continuum quark-level theory including explicit nonzero a effects [Symanzik]

Chiral Lagrangian:
continuum χPT plus effects of additional operators induced by discretization
Power counting

- In chPT expand in \(\frac{p^2}{\Lambda^2} \sim \frac{m^2_{P\bar{G}B}}{\Lambda^2} \sim \frac{m_q}{\Lambda_{QCD}} \)
 - Second “equality” follows from \(\frac{m_K^2}{(4\pi f^2)^2} = 0.18 \approx \frac{m_{\text{phys}}}{\Lambda_{QCD}} \approx \frac{80}{300} = 0.27 \)

- How does \(\frac{m_q}{\Lambda_{QCD}} \) compare to \((a\Lambda_{QCD})^n\)?

- Equivalently, how does \(m_q \) compare to \(a\Lambda^2_{QCD}, a^2\Lambda^3_{QCD}, \ldots \)?
 - If \(a^{-1} = 2 \text{ GeV} \) and \(\Lambda_{QCD} = 300 \text{ MeV} \), then
 \[a\Lambda^2_{QCD} = 45 \text{ MeV}, \quad a^2\Lambda^3_{QCD} = 7 \text{ MeV}, \quad a^3\Lambda^4_{QCD} = 1 \text{ MeV} \]

- Appropriate power counting is \(a^2\Lambda^2_{QCD} \lesssim m_q/\Lambda_{QCD} \lesssim a\Lambda_{QCD} \)

- **LESSON:** \(O(a) \) effects MUST BE REMOVED, and \(O(a^2) \) understood

S. Sharpe, “XPT for LQCD (II)”, Nara, 11/7/2005 – p.25/70
Power counting terminology

- **Generic Small Mass (GSM) regime**: $\Lambda_{\text{QCD}} \gg m_q \gtrsim a\Lambda_{\text{QCD}}^2$
 - Includes $m_q \gg a\Lambda_{\text{QCD}}^2$ and $m_q \approx a\Lambda_{\text{QCD}}^2$ but not $m_q \ll a\Lambda_{\text{QCD}}^2$

- **Aoki regime**: $m_q \lesssim a^2\Lambda_{\text{QCD}}^3$
 - Includes $m_q \ll a^2\Lambda_{\text{QCD}}^3$

tmχPT at NLO

- Rewrite \mathcal{L}_χ in terms of χ' [Sharpe & Wu]

$$
\mathcal{L}_\chi = \frac{f^2}{4} \text{tr}(D_\mu \Sigma D_\mu \Sigma^\dagger) - \frac{f^2}{4} \text{tr}(\chi'^\dagger \Sigma + \Sigma^\dagger \chi')
- L_1 \text{tr}(D_\mu \Sigma D_\mu \Sigma^\dagger)^2 - L_2 \text{tr}(D_\mu \Sigma D_\nu \Sigma^\dagger)\text{tr}(D_\mu \Sigma D_\nu \Sigma^\dagger)
+ L_{45} \text{tr}(D_\mu \Sigma^\dagger D_\mu \Sigma)\text{tr}(\chi'^\dagger \Sigma + \Sigma^\dagger \chi') - L_{68} \left[\text{tr}(\chi'^\dagger \Sigma + \Sigma^\dagger \chi') \right]^2
+ \tilde{W} \text{tr}(D_\mu \Sigma^\dagger D_\mu \Sigma)\text{tr}(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A}) - W \text{tr}(\chi'^\dagger \Sigma + \Sigma^\dagger \chi')\text{tr}(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A})
- W' \left[\text{tr}(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A}) \right]^2 + W_{10} \text{tr}(\hat{D}_\mu \hat{A}^\dagger D_\mu \Sigma + D_\mu \Sigma^\dagger D_\mu \hat{A})
$$

- LECs are shifted:
 $$
 \tilde{W} = W_{45} - L_{45}, \quad W = W_{68} - 2L_{68}, \quad W' = W'_{68} - W_{68} + L_{68}
 $$

- W_{10} is redundant: can be shifted into other LECs
 - If $\delta \Sigma = \frac{2}{f^2} W_{10} \left(\Sigma \hat{A}^\dagger \Sigma - \hat{A} \right)$
 - then $W \rightarrow W + W_{10}/4$, $\tilde{W} \rightarrow \tilde{W} + W_{10}/2$
 - Useful to keep W_{10} as check on calculations, but will drop here
Comparing $tm\chi PT$ with data

$$m_{\pi \pm}^2 = |\chi'| + \text{cont. 1-loop chiral logs}$$

$$+ \frac{16}{f^2} \left[|\chi'|^2 (2L_{68} - L_{45}) + |\chi'| \hat{a} \cos \omega_0 (2W - \bar{W}) + 2\hat{a}^2 (\cos \omega_0)^2 W' \right]$$

- Clear antisymmetry of \(\approx 30\% \sim a\Lambda^2 \) with \(\Lambda \approx 300 \text{ MeV} \)
- Non-vanishing minimum pion mass due to \(W' \)

[Farchioni et al., hep-lat/0410031]
More NLO results

- Dynamical Wilson fermion results for $a = 0.06 - 0.08$ with m_π down to 280 MeV [Giusti]
- Earlier simulations for $a = 0.14 - 0.2$ fm (also with Wilson gauge action) found first-order phase transition, with $m_{\pi,\text{min}} \approx 600$ MeV at $a = 0.2$ fm
- According to tmχPT at NLO, $m_{\pi,\text{min}} \propto a + a^2 + \ldots$
- Thus expect $m_{\pi,\text{min}} \approx 240$ MeV at $a = 0.08$ fm

- m_π^2 vs. m_{PCAC} might look like:
- $\delta W = \delta \tilde{W} = -0.3$, $\sqrt{|2w'|} = 250$ MeV, L_i and chiral logs ignored

\[\text{mpi}^2 \text{ vs. PCAC mass, mu=0}\]
Relation between definitions of ω

- At maximal twist:

 (i): $\omega_A = \pi/2 \implies \omega_0 = \omega_A + \delta W = \pi/2 + \delta W$

 (iii): $\omega_P = \pi/2 \implies \omega_0 = \omega_P = \pi/2$

Both methods lead to automatic $O(a)$ improvement

- In quenched simulations $\delta W \approx -0.35$ for $a^{-1} \approx 2$ GeV [Abdel-Rehim]

- Direct measure of LEC associated with discretization errors ($\Lambda \approx 0.7$ GeV)

- If fix $m' \sim O(a)$ ("method (iv)")}, then NOT AT MAXIMAL TWIST
Outline of Lecture 2

- Incorporating discretization errors into χPT
 - Why is this useful?
 - General two-step strategy

- Application to Wilson & twisted mass fermions
 - Symanzik effective action
 - Mapping Symanzik action into χPT
 - Results for $m_q \sim a\Lambda_{QCD}^2$
 - Defining the twist angle
 - Results for $m_q \sim a^2\Lambda_{QCD}^3$
Theoretical references for this section

Simulations relevant for this section

Power counting in the Aoki regime

- Power counting differs from GSM regime:
 - No $O(a)$ since absorbed into m'
 - LO: $m_q \sim a^2$
 - NLO: $m_q a \sim a^3$
 - NNLO: $m_q^2 \sim m_q a^2 \sim a^4$

- Reorders terms in \mathcal{L}_χ:

 \[
 \mathcal{L}_\chi^{\text{LO}} = \frac{f^2}{4} \text{tr}(D_\mu \Sigma D_\mu \Sigma^\dagger) - \frac{f^2}{4} \text{tr}(\chi'^\dagger \Sigma + \Sigma^\dagger \chi') - W' [\text{tr}(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A})]^2
 \]

 \[
 \mathcal{L}_\chi^{\text{NLO}} = \bar{W} \text{tr}(D_\mu \Sigma^\dagger D_\mu \Sigma) \text{tr}(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A}) - W \text{tr}(\chi'^\dagger \Sigma + \Sigma^\dagger \chi') \text{tr}(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A})
 \]

 \[
 - \frac{W_{3,1}}{f^2} \text{tr}(\hat{A}^\dagger \hat{A}) \text{Tr}(\hat{A}^\dagger \Sigma + \text{p.c.}) - \frac{W_{3,3}}{f^2} \left[\text{tr}(\hat{A}^\dagger \Sigma)^3 + \text{p.c.} \right]
 \]

- At LO have competition between continuum and "lattice" terms
- Two extra LECs at NLO, but $W_{3,1}$ can be absorbed by shift in m'
- Only parts of W, \bar{W} terms containing sources are of NLO

S. Sharpe, “XPT for LQCD (II)”, Nara, 11/7/2005 – p.54/70
The Aoki regime at LO

\[\mathcal{L}_{\chi}^{\text{LO}} = \frac{f^2}{4} \text{tr}(D_\mu \Sigma D_\mu \Sigma^\dagger) - \frac{f^2}{4} \text{tr}(\chi'^\dagger \Sigma + \Sigma^\dagger \chi') - W' \left[\text{tr}(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A}) \right]^2 \]

- Along Wilson axis competition between terms odd and even under \(\Sigma \rightarrow -\Sigma \Rightarrow \) two possible phase structures [Creutz; Sharpe & Singleton]
- Extended to twisted mass-plane in [Münster; Scorzato; Sharpe & Wu]

\[\alpha = 2B_0 m' / (16|W'|\hat{a}^2 / f^2), \quad \beta = 2B_0 \mu / (16|W'|\hat{a}^2 / f^2) \]

$W' < 0$: Aoki phase

Condensate: $\langle \Sigma \rangle = A_m + iB_m \tau_3$

Aoki phase washed out for $\mu \propto \beta \neq 0$

(a) Mass of π_1 and π_2

(b) Mass of π_3

S. Sharpe, “XPT for LQCD (II)”, Nara, 11/7/2005 – p.56/70
$W' > 0$: first-order transition

Along Wilson axis:

At top of phase transition: (dashed: charged pions; solid: neutral)

S. Sharpe, “XPT for LQCD (II)”, Nara, 11/7/2005 – p.57/70
More on $W' > 0$

Above phase transition: (dashed: charged pions; solid: neutral)

\[\begin{align*}
\alpha & = 2B_0m'/(16|W'|\hat{a}^2/f^2), \\
\beta & = 2B_0\mu/(16|W'|\hat{a}^2/f^2)
\end{align*} \]

- $c_2 = -16W'\hat{a}^2 \Rightarrow m^2_\pi \sim a^2$ in all plots
- Pion mass-splitting depends on same LEC that determines phase structure and size of phase boundaries [Scorzato]

\[m^2_\pi \pm - m^2_\pi = -\frac{32W'\hat{a}^2}{f^2}(\sin \omega_0)^2 + O(a^3) \]

- $W' < 0 \Rightarrow m_\pi \pm \leq m_\pi^0$ and Aoki phase
- $W' > 0 \Rightarrow m_\pi \pm \geq m_\pi^0$ and first-order
Stability of predictions

- Do higher order terms in tmχPT change the phase structure?
 - No! (As long as the higher order terms are smaller)
 - The presence of the first order transition is stable against small changes in the potential
 - The position of the line may move a small amount.
 - The properties of the second-order endpoints may be changed substantially (e.g. size of logarithmic corrections to scaling) [Aoki]
Lessons for lattice (I)

- Expect phase structure with potential isospin breaking $\sim a^2$
- Prediction of Aoki-phase made long ago (how can $m_\pi \to 0$ without chiral symmetry?) [Aoki]
- Old (80-90’s) quenched studies gave evidence for Aoki-phase scenario
- New results with dynamical tm quarks find first-order scenario, e.g. [Farchioni et al, hep-lat/0506025]

- Discontinuity decreases with a qualitatively as expected
- Charged pion mass and m_{PCAC} do not vanish
- Gives confidence in tmχPT
Lessons for lattice (II)

- $\text{tm}\chi\text{PT}$ gives reasonable description of data, e.g. [Farchioni et al, hep-lat/0410031]

- Detailed fits of m_π, f_π, g_π, ω_A ... appear to confirm this [Aoki & Bar; Farchioni et al]

- Fits should be done using full NLO forms (available for GSM and Aoki regimes [Sharpe & Wu; Aoki & Bar; Sharpe])
Examples of NLO results

- Contours of charged m_π^2 in $m'' - \mu$ (in GeV) plane:
 - $\delta W = \delta \overline{W} = -0.3$, $|W'| = 16\hat{a}^2|W'|/f^2 = (250 \text{ MeV})^2$, $W_{3,3} = 0$

- Aoki phase
- First-order

- Phase structure could severely impede chiral extrapolations!
Lessons for lattice (III)

- **Tune gauge action to reduce** $W' (\propto c_2)$ **and shrink phase boundaries and pion mass splitting**
 - Relies on tmχPT prediction that only one $O(a^2)$ LEC
 - $O(a)$ improving fermion action not enough, since W' term is $O(a^2)$
 - If $W' \sim a$, then $O(a^3)$ terms in V_χ impact phase structure
 - Find one scenario with both Aoki-phase *and* first-order, but size $\sim a^3$ [Sharpe]
 - Does **not** remove $O(a)$ errors in physical quantities, e.g. along Wilson axis

- **Success with both DBW2 and tree-level improved Symanzik gauge actions**
 - Discontinuities much reduced [Farchioni *et al*]
 - Isospin splittings small, favor Aoki-phase scenario [McNeile]
 - Very encouraging for tmLQCD

Lessons for lattice (IV): maximal twist

- How do definitions of maximal twist extrapolate into the Aoki regime?
- Does automatic $O(a)$ improvement still hold?

- Addressed by [Aoki & Bär; Sharpe & Wu; Sharpe]

- Methods (i) $[\omega_A = \pi/2]$, (iii) $[\omega_P = \pi/2]$, and (ii) still apply and lead to automatic $O(a)$ improvement

- $\langle \Sigma \rangle = i\tau_3 + O(a)$

- Must adjust m with increasing accuracy as μ decreases

- Isospin breaking is $\sim 100\%$ as $\mu \to 0$

- $m_\pi \to 0$ definition fails
More on maximal twist in Aoki regime

- First-order scenario appears “worse”
- Automatic $O(a)$ improvement stops at end-points
- Infact just a reversal of roles of π^\pm and π^0
 - Aoki-phase: $m_{\pi^\pm} \to 0$, $m_{\pi^0} \sim a$
 - First-order: $m_{\pi^\pm} \sim a$, $m_{\pi^0} \to 0$

S. Sharpe, “XPT for LQCD (II)”, Nara, 11/7/2005 – p.64/70
Isospin breaking at maximal twist

- Comparing the two scenarios:

Aoki phase

- First-order

NLO expressions for Aoki regime (chiral logs and L_i dropped)
- Charged: solid lines; neutral: dashed.
- Method (i): thick lines; method (iii) thin.

$\delta_W = \delta_{\bar{W}} = -0.3$, $w' = 16a^2W'/f^2 = \mp(250\text{ MeV})^2$, $W_{3,3} = 0$

Lesson: What matters most is reducing size of W'—whether in Aoki or first order scenario is less important.
Bending near maximal twist

- “Bending” or apparent IR divergences occur if make poor choice of m_c
 - E.g. Aoki-phase scenario, using
 - method (i) [$O(a)$ improved]
 - $m_\pi = 0$ choice ($m'' = -5$ MeV)
 - Missing m_c by 5 MeV ($m'' = -10$ MeV)

- $\omega_A \approx a^3$,

- $\omega_P \approx \pi/2$

- $\delta \omega \approx a^2$

- $\delta W = \delta \tilde{W} = -0.3$, $w' = -(250 \text{ MeV})^2$, $W_{3,3} = 0$ (Chiral logs, most $L_i \to 0$)

- Can correct for some of effect if determine ω, but only method (ii) gives automatic improvement after correction
More on Bending

- Observed in simulations (and fit by [Aoki & Bär]), but removed using methods (i) or (ii) (figure from review [Shindler]).

- Bending caused by vacuum bending significantly away from $\langle \Sigma \rangle = i\tau_3$.

- If perturb about $\langle \Sigma \rangle = i\tau_3$, then find IR divergences due to π^0 poles [Frezzotti et al].

- These are summed up by tmχPT by expanding about correct vacuum.

- BOTTOM LINE: use a non-perturbative determination of maximal twist!

S. Sharpe, “XPT for LQCD (II)”, Nara, 11/7/2005 – p.67/70
Why does maximal twist work?

- Why are physical quantities automatically $O(a)$ improved?
- At quark level, maximal twist implies:

$$\mathcal{L}_{NLO}^{(4+5)} = \bar{\psi} \not{D} \psi + \mu \bar{\psi} i \gamma_5 \tau_3 \psi + ac \bar{\psi} i \sigma_{\mu \nu} F_{\mu \nu} \psi$$

$$= \bar{\psi}_{\text{phys}} \not{D} \psi_{\text{phys}} + \mu \bar{\psi}_{\text{phys}} \psi_{\text{phys}} + ac \bar{\psi}_{\text{phys}} \gamma_5 \tau_3 \sigma_{\mu \nu} F_{\mu \nu} \psi_{\text{phys}}$$

$$\Rightarrow O(a)$$ corrections necessarily violate parity and flavor
$$\Rightarrow$$ physical (parity-flavor conserving) quantities corrected only at $O(a^2)$

- At chiral Lagrangian level, potential $O(a)$ terms are

$$\mathcal{L}_{\chi,NLO} = \cdots + W \tr(D_\mu \Sigma^\dagger D_\mu \Sigma) \tr(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A})$$

$$- W \tr(\chi'^\dagger \Sigma + \Sigma^\dagger \chi') \tr(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A}) + \cdots$$

- $\tr(\hat{A}^\dagger \Sigma + \Sigma^\dagger \hat{A})$ vanishes when $\Sigma = i\tau_3$
- Expanding about $\langle \Sigma \rangle = i\tau_3$ get only odd powers of π

$$\Rightarrow$$ $O(a)$ terms only contribute to unphysical processes
Does it work in practice?

- Yes! Several successful scaling tests, e.g. quenched by [Farchioni et al]
Future issues

- **Challenges for simulations:**
 - Can W' (a.k.a. c_2, c_1!) be tuned so phase-transition region shrinks significantly?
 - Can ω be tuned to $\pi/2$ accurately enough in practice?
 - Can isospin breaking be determined (Δm_π^2, Δm_Δ, \ldots)?
 - Can fits test tmχPT (working not only at maximal twist)?
 - Inclusion of strange (and charm?) quarks (begun by [Farchioni lat05]

- **Challenges for tmχPT:**
 - Inclusion of Δm_π^2 into loops (analogue of including taste-breaking into staggered pion loops—which is very important in practice). Requires going to NNLO.
 - Extension to other hadrons (baryons done [Walker-Loud & Wu]
 - Extension to partially quenched theories (begun by [Münster et al]
 - Study discretization effects on calculations of weak matrix elements
Outline of 3 lectures

- **Lecture 1**
 - Overview and aims of 3 lectures
 - Chiral perturbation theory for (continuum) QCD

- **Lecture 2**
 - Incorporating lattice spacing errors
 - Application to Wilson & twisted mass fermions

- **Lecture 3**
 - Partial quenching and PQ\(\chi\)PT
 - Application to staggered fermions
Outline of Lecture 3

- Partial quenching and PQ\chi PT
 - What is partial quenching?
 - Developing PQ\chi PT
 - Results and outlook

- Application to staggered fermions
References for Partial Quenching

- S. R. Sharpe and N. Shoresh, “Partially quenched chiral perturbation theory without Φ_0,” Phys. Rev. D 64, 114510 (2001)
What is Partially Quenched QCD?

- Explain with example of pion correlator:

\[C_\pi(\tau) = -\left\langle \sum_{\vec{x}} \bar{u}\gamma_5 d(\vec{x}, \tau) \, d\gamma_5 u(0) \right\rangle \]

\[\equiv -\frac{1}{Z} \int DU \prod_q DqD\bar{q} e^{-S_{\text{gauge}} - \int_x \sum_q \bar{q}(\not{D} + m_q)q} \sum_{\vec{x}} \bar{u}\gamma_5 d(\vec{x}, \tau) \, d\gamma_5 u(0) \]

\[= \frac{1}{Z} \int DU \prod_q \det(\not{D} + m_q) e^{-S_{\text{gauge}}} \sum_{\vec{x}} \text{tr} \left[\gamma_5 \left(\frac{1}{\not{D} + m_d} \right)_{x0} \gamma_5 \left(\frac{1}{\not{D} + m_u} \right)_{0x} \right] \]

\[= \left\langle \sum_\gamma \gamma \right\rangle \]

\[\propto f_\pi^2 e^{-m_\pi \tau} + \text{exp. suppressed} \]

- “sea” quarks in determinant; “valence” in propagators

- Partial Quenching: \(m_{\text{val}} \neq m_{\text{sea}} \)—many different \(m_{\text{val}} \) for each \(m_{\text{sea}} \)

- Numerically cheap—can we make use of this extra information?
PQQCD needs χPT

- Use PQQCD as a tool to learn about QCD, not as a model of QCD
 - PQQCD is unphysical, e.g. not unitary
 - Intermediate and external "states" differ, e.g. $\pi V \pi V \rightarrow \pi S \pi S \rightarrow \pi V \pi V$

- Need PQQχPT in order to extrapolate to QCD
 - must be in the quark-mass regime where χPT is valid
 - Extends the range over which can match lattice and χPT

- Subspace with $m_{\text{val}} = m_{\text{sea}}$ are physical QCD-like theories
 - PQQχPT must match χPT on subspace
 - LECs in PQQχPT include those appearing in χPT, plus a few (sometimes none) additional unphysical ones
Historical comment on nomenclature

- Why called partially quenched? Why not partially unquenched?
- Bad old days: quenched approximation $m_{\text{sea}} \to \infty$
 \[\Rightarrow \det(\mathbb{P} + m_q) \to \text{constant} \]
 \[\Rightarrow \text{No quark loops} \]
 \[\Rightarrow Z_{\text{QCD}} \to Z_{\text{QQCD}} = \int D U e^{-S_{\text{gauge}}} = Z_{\text{gauge}} \]
- Unphysical nature of quenched QCD shows up various ways, e.g.
 \[\langle \bar{\psi} \psi \rangle \to \infty \text{ as } m_{\text{val}} \to 0 \]
- Partial quenching is in one sense a less extreme version of quenching, and thus the name
- If $m_{\text{sea}} \gg \Lambda_{\text{QCD}}$ then PQQCD, like quenched QCD, only qualitatively related to QCD
- Consider here only the case when $m_{\text{sea}} \ll \Lambda_{\text{QCD}}$ so one can use χPT and relate PQCD to QCD quantitatively

S. Sharpe, “χPT for LQCD (III)”, Nara, 11/7/2005 – p.7/46
Morel’s formulation of (P)QQCD

IDEA: commuting spin-$\frac{1}{2}$ fields (ghosts) \tilde{q} give determinant which cancels that from valence quarks

$$\int D\bar{q} Dq \ e^{-\bar{q}(\not{D} + m_q)q} = \det(\not{D} + m_q)$$

$$\int D\bar{q}^\dagger D\bar{q} \ e^{-\bar{q}^\dagger(\not{D} + m_q)\bar{q}} = \frac{1}{\det(\not{D} + m_q)}$$

To formulate PQQCD need three types of “quark”

- valence quarks $q_{V1}, q_{V2}, \ldots q_{VN_V} \ (N_V = 2, 3, \ldots)$
- sea quarks $q_{S1}, q_{S2}, \ldots q_{SN} \ (N = 2, 3)$
- ghosts $\tilde{q}_{V1}, \tilde{q}_{V2}, \ldots \tilde{q}_{VN_V} \ (N_V = 2, 3, \ldots)$

- Ghosts are degenerate with corresponding valence quarks

Morel’s formulation (cont.)

Partition function reproduces that which is simulated:

\[
Z_{PQ} = \int DU e^{-S_{\text{gauge}}} \prod_{i=1}^{N_V} \left(D\bar{q}_V Dq_V D\bar{q}_V^+ D\bar{q}_V \right) \prod_{j=1}^{N} \left(D\bar{q}_S Dq_S \right) \times \\
\times \exp \left[-\sum_{i=1}^{N_V} \bar{q}_V (\bar{q}_V + m_{Vi})q_V - \sum_{j=1}^{N} \bar{q}_S (\bar{q}_S + m_{Si})q_S - \sum_{k=1}^{N_V} \bar{q}_V^+ (\bar{q}_V + m_{V_k})q_V \right] \\
= \int DU e^{-S_{\text{gauge}}} \prod_{i=1}^{N_V} \left(\frac{\det(\bar{q}_V + m_{Vi})}{\det(\bar{q}_V + m_{Vi})} \right) \prod_{j=1}^{N} \det(\bar{q}_S + m_{Sj}) \\
= \int DU e^{-S_{\text{gauge}}} \prod_{j=1}^{N} \det(\bar{q}_S + m_{Sj}) \\
= Z_{\text{QCD-like}}
\]
Compact Notation

- Collect all fields into \((N + 2N_V)\)-dim vectors:

\[
Q = \begin{pmatrix} qV_1, qV_2, \ldots, qV_{N_V}, qS_1, qS_2, \ldots, qS_N, \tilde{q}V_1, \tilde{q}V_2, \ldots, \tilde{q}V_{N_V} \\ \text{valence} & \text{sea} & \text{ghost} \end{pmatrix}
\]

\[
Q^{tr} = \begin{pmatrix} \bar{q}V_1, \bar{q}V_2, \ldots, \bar{q}V_{N_V}, \bar{q}S_1, \bar{q}S_2, \ldots, \bar{q}S_N, \tilde{q}V_1, \tilde{q}V_2, \ldots, \tilde{q}V_{N_V} \\ \text{valence} & \text{sea} & \text{ghost} \end{pmatrix}
\]

\[
\mathcal{M} = \begin{pmatrix} mV_1, mV_2, \ldots, mV_{N_V}, mS_1, mS_2, \ldots, mS_N, mV_1, mV_2, \ldots, mV_{N_V} \\ \text{valence} & \text{sea} & \text{ghost valence} \end{pmatrix}
\]

- Then can write action and partition function as:

\[
S_{PQ} = S_{\text{gauge}} + \overline{Q}(\bar{\Psi} + \mathcal{M})Q
\]

\[
Z_{PQ} = \int D\bar{\Psi}D\Psi DQ \ e^{-S_{PQ}}
\]
Formal representation of PQ correlator

\[
C^{PQ}_\pi(\tau) = \left\langle \sum \gamma_5 \right. \begin{array}{c} x \\ \end{array} \begin{array}{c} 0 \\ \gamma_5 \end{array} \left(\begin{array}{c} d_V \\ u_V \end{array} \right) \right\rangle
\]

\[
= Z_{PQ}^{-1} \int DU \prod_{j=1}^N \det(\overline{\psi} + m_{Sj}) e^{-S_{\text{gauge}}}
\times \sum_{\vec{x}} \text{tr} \left[\gamma_5 \left(\frac{1}{\overline{\psi} + m_{Vd}} \right) x_0 \gamma_5 \left(\frac{1}{\overline{\psi} + m_{Vu}} \right)_{0x} \right]
\]

\[
= Z_{PQ}^{-1} \int DU D\overline{Q} DQ \ e^{-S_{\text{PQ}}} \sum_{\vec{x}} \overline{u}_V \gamma_5 d_V (\vec{x}, \tau) \ \overline{d}_V \gamma_5 u_V (0)
\]

\[
Q = (q_{V1}, q_{V2}, \ldots, q_{VN_v}, q_{S1}, q_{S2}, \ldots, q_{SN}, \tilde{q}_{V1}, \tilde{q}_{V2}, \ldots, \tilde{q}_{VN_v})
\]

S. Sharpe, "\chi PT for LQCD (III)", Nara, 11/7/2005 – p.11/46
What have we learned about PQQCD?

- Well defined statistical system describing correlators in Euclidean space
 - Can use to represent individual contractions in complicated processes, e.g. \(\pi \pi \rightarrow \pi \pi \)

- Regained unitarity, but at the cost of introducing ghosts

- Shows in what way the PQ theory is unphysical
 - violate spin-statistics theorem
 - lose causality and positivity in Minkowski space
 - lose reflection positivity in Euclidean space

- Unphysical nature shows up in various ways:
 - Double poles in correlation functions
 - Correlators involving multi-particle states do not have exponential fall-off in time, and have contributions which diverge in infinite volume \(\Rightarrow \) cannot define scattering amplitudes \([\text{Lin et al}]\)

- Can we develop an EFT describing PQQCD including its unphysical nature?
Key property of PQQCD

- “Anchored” to physical QCD-like theories
- If $m_{V_u} = m_{S_j}$ and $m_{V_d} = m_{S_k}$ then valence correlator is physical:

$$C_{\pi}^{PQ}(\tau) = Z_{PQ}^{-1} \int DU D\bar{Q} DQ e^{-S_{PQ}} \sum_{\bar{x}} \bar{u}_V \gamma_5 d_V(\bar{x}, \tau) \bar{d}_V \gamma_5 u_V(0)$$

$$= Z_{PQ}^{-1} \int DU D\bar{Q} DQ e^{-S_{PQ}} \sum_{\bar{x}} \bar{q}_{S_j} \gamma_5 q_{S_k}(\bar{x}, \tau) \bar{q}_{S_k} \gamma_5 q_{S_j}(0)$$

$$= Z_{QCD-like}^{-1} \int DU \prod_{i=1}^{N} D\bar{q}_{Si} Dq_{Si} e^{-S_{QCD-like}}$$

$$\times \sum_{\bar{x}} \bar{q}_{S_j} \gamma_5 q_{S_k}(\bar{x}, \tau) \bar{q}_{S_k} \gamma_5 q_{S_j}(0)$$

$$= C_{\pi}^{QCD-like}(\tau)$$

- Example of enhanced ($V \leftrightarrow S$) symmetry in PQ theory
Outline of Lecture 3

- Partial quenching and PQχPT
 - What is partial quenching?
 - Developing PQχPT
 - Results and outlook
- Application to staggered fermions
Methods for developing PQχPT

- “Supersymmetric” method based on Morel’s formulation [Bernard & Golterman]
- “Quark-line” method accounting by hand for quarks in loops [Sharpe]
- “Replica” method adjusting loop contributions by adjusting N_{sea} [Damgaard & Splittorf]
- All give same results to date—likely equivalent
- Use supersymmetric method here (with addition of some quark-line method when considering staggered fermions)
Symmetries of PQQCD

\[
Q = \left(q_{V1}, q_{V2}, \ldots, q_{VN_V}, q_{S1}, q_{S2}, \ldots, q_{SN}, \tilde{q}_{V1}, \tilde{q}_{V2}, \ldots, \tilde{q}_{VN_V} \right)
\]

- Action of PQQCD looks like QCD
 \[
 S_{PQQCD} = S_{\text{gauge}} + \bar{Q}(\bar{\psi} + M)Q
 \]

- Naively, when \(M \to 0 \) have graded version of QCD chiral symmetry:
 \[
 Q_{L,R} \rightarrow U_{L,R}Q_{L,R}, \quad \bar{Q}_{L,R} \rightarrow \bar{Q}_{L,R}U_{L,R}^\dagger \quad U_{L,R} \in SU(N_V + N|N_V)
 \]

- Apparent symmetry is \(SU(N_V + N|N_V)_L \times SU(N_V + N|N_V)_R \times U(1)_V \)

- In fact, there are subtleties in the ghost sector, but can ignore in perturbative calculations [Sharpe & Shoresh]
Brief primer on graded Lie groups

- U is graded: contains both commuting and anticommuting elements:
 \[
 U = \begin{pmatrix}
 A & B \\
 C & D \\
 \end{pmatrix}, \quad A, D \text{ commuting, } B, C \text{ anticommuting}
 \]

- If $U \in U(N_V + N|N_V)$ (fundamental representation) then
 \[
 UU^\dagger = U^\dagger U = 1, \quad [\text{with } (\eta_1 \eta_2)^* \equiv \eta_2^* \eta_1^*]
 \]

- Supertrace maintains cyclicity:
 \[
 \text{str} U \equiv \text{tr}A - \text{tr}D \quad \Rightarrow \quad \text{str}(U_1 U_2) = \text{str}(U_2 U_1)
 \]

- For $U \in SU(N_V + N|N_V)$, superdeterminant is unity:
 \[
 \text{sdet} U \equiv \exp[\text{str}(\ln U)] = \frac{\det(A - BD^{-1}C)}{\det(D)} \quad \Rightarrow \quad \text{sdet}(U_1 U_2) = \text{sdet}U_1 \text{sdet}U_2
 \]
Examples of $SU(N_V + N|N)$ matrices

$U = \begin{pmatrix} SU(N_V + N) & 0 \\ 0 & SU(N_V) \end{pmatrix} \Rightarrow \text{sdet}U = 1$

$U = \begin{pmatrix} e^{i\theta N_V} & 0 \\ 0 & e^{i\theta(N+N_V)} \end{pmatrix} \Rightarrow \text{sdet}U = \frac{(e^{i\theta N_V})^{N+N_V}}{(e^{i\theta(N+N_V)})^{N_V}} = 1$

- An overall phase rotation is not in $SU(N_V + N|N)$

$U = \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{i\theta} \end{pmatrix} \Rightarrow \text{sdet}U = \frac{e^{i\theta(N+N_V)}}{e^{i\theta N_V}} = e^{i\theta N}$

- Thus $U(N_V + N|N_V) = [SU(N_V + N|N_V) \otimes U(1)]/Z_N$

- Group structure different if $N = 0$ (quenched theory)
Follow same steps as for QCD

- Expand about $\mathcal{M} = 0$
 - *A posteriori* find that must take chiral limit with m_V and m_S in fixed ratio
 - Divergences if $m_V \to 0$ at fixed m_S [Sharpe]

- Graded chiral symmetry is broken by condensate
 - Have Goldstone bosons and fermions (but both spin 0)

- Develop low-energy EFT based on symmetries and symmetry braking
 - Weaker theoretical basis than usual χPT since underlying theory is unphysical
 - PQχPT matches unphysical features of PQQCD (e.g. double poles)

- Most LECs in PQχPT are the same as those in χPT because QCD is a subset of PQQCD
 - Use PQQCD to determine physical parameters of QCD (and/or to improve chiral extrapolations)
Symmetry breaking in PQQCD

- Symmetry group \((M \to 0)\): \(G = SU(N_V + N|N_V)_L \times SU(N_V + N|N_V)_R\)
- For \(M\) diagonal, real and positive [Vafa & Witten] implies graded vector symmetry not spontaneously broken
 - Quark and ghost condensates equal if \(m_V = m_S \to 0\)
 \[\langle qV \bar{q}V \rangle = \langle \bar{q}V qV \rangle = \langle qS \bar{q}S \rangle = \omega\]
- Spontaneous chiral symmetry breaking in QCD \(\Rightarrow \omega \neq 0\)
 - We know pattern of symmetry breaking. Introducing order parameter
 \[\Omega_{ij} = \langle Q_{L,i,\alpha,c} \bar{Q}_{R,j,\alpha,c} \rangle_{PQ} \to_{G} U_L \Omega U_R^\dagger\]
 we know \(\Omega = \omega \times 1\) with standard masses \(\Rightarrow\) vacuum manifold is \(SU(N_V + N|N_V)\)
 - Symmetry breaking is \(G \to H = SU(N_V + N|N_V)_V\)
- Can derive Goldstone’s theorem using Ward identities for two-point Euclidean correlators
 - \((N + 2N_V)^2 - 1\) Goldstone “particles” created by operators \(\bar{Q}\gamma_\mu\gamma_5 T^a Q\)
 with \(T^a\) a traceless generator of \(SU(N_V + N|N_V)\)
Moving to EFT

- In QCD, proceed as follows:
 - having established GB poles in two-point functions, we know that they will also be present in higher-order correlation functions, and in cuts
 - χPT reproduces this behavior, while incorporating the chiral Ward identities, and yielding physical S-matrix

- In PQQCD, situation is worse:
 - Have GB poles in two-point functions
 - Have Ward identities between correlation functions
 - No Hamiltonian so cannot show that same poles appear in higher-order correlation functions, or in cuts (no complete sets of states)
 - In fact, can show that there are double poles (but no higher) in neutral correlators [Sharpe & Shoresh]
 - Cannot rely on Weinberg’s argument to determine EFT since no S-matrix
 - Only “anchor” is fact that know EFT for QCD-like subspace

- For PQQCD must simply assume minimal change from QCD: assume that have local \mathcal{L}_{eff}, constrained by symmetries
 - Saturates Ward identities and reproduces double poles

S. Sharpe, “χPT for LQCD (III)”, Nara, 11/7/2005 – p.21/46
Constructing \mathcal{L}_{PQ}: choice of Σ

- Follow method used for QCD:

$$\Omega/\omega \to \Sigma(x) \in SU(N_V + N|N) , \quad \Sigma \rightarrow U_L \Sigma U_R^\dagger$$

- For standard masses, $\langle \Sigma \rangle = 1$, so define Goldstones by

$$\Sigma = \exp \left[\frac{2i}{f} \Phi(x) \right] , \quad \Phi(x) = \begin{pmatrix} \phi(x) & \eta_1(x) \\ \eta_2(x) & \tilde{\phi}(x) \end{pmatrix}$$

\[\text{sdet} \Sigma = 1 \Rightarrow \text{str} \Phi = \text{tr} \phi - \text{tr} \tilde{\phi} = 0 \]

- QCD GBs contained in Φ

$$\Phi(x) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \pi(x) & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \Sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \Sigma_{QCD} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Building blocks for PQχPT as for χPT, e.g.

$$L_\mu = \Sigma D_\mu \Sigma^\dagger \rightarrow U_L L_\mu U_L^\dagger , \quad \text{str}(L_\mu) = 0$$

- Power counting as in χPT

S. Sharpe, “χPT for LQCD (III)”, Nara, 11/7/2005 – p.22/46
PQ chiral Lagrangian [Bernard & Golterman]

\[L^{(2)} = \frac{f^2}{4} \text{str} \left(D_\mu \Sigma D_\mu \Sigma^\dagger \right) - \frac{f^2}{4} \text{str}(\chi \Sigma^\dagger + \Sigma \chi^\dagger) \]

\[L^{(4)} = -L_1 \text{str}(D_\mu \Sigma D_\mu \Sigma^\dagger)^2 - L_2 \text{str}(D_\mu \Sigma D_\nu \Sigma^\dagger)\text{tr}(D_\mu \Sigma D_\nu \Sigma^\dagger) \]

\[+ L_3 \text{str}(D_\mu \Sigma D_\mu \Sigma^\dagger D_\nu \Sigma D_\nu \Sigma^\dagger) \]

\[+ L_4 \text{str}(D_\mu \Sigma^\dagger D_\mu \Sigma)\text{str}(\chi^\dagger \Sigma + \Sigma^\dagger \chi) + L_5 \text{str}(D_\mu \Sigma^\dagger D_\mu \Sigma)[\chi^\dagger \Sigma + \Sigma^\dagger \chi] \]

\[- L_6 [\text{str}(\chi^\dagger \Sigma + \Sigma^\dagger \chi)]^2 - L_7 [\text{str}(\chi^\dagger \Sigma - \Sigma^\dagger \chi)]^2 - L_8 \text{str}(\chi^\dagger \Sigma \chi^\dagger \Sigma + p.c.) \]

\[+ L_9 i\text{str}(L_{\mu\nu} D_\mu \Sigma D_\nu \Sigma^\dagger + p.c.) + L_{10} \text{str}(L_{\mu\nu} \Sigma R_{\mu\nu} \Sigma^\dagger) \]

\[+ H_1 \text{str}(L_{\mu\nu} L_{\mu\nu} + p.c.) + H_2 \text{str}(\chi^\dagger \chi) + WZW_{PQ} \]

\[+ L_{PQ} \mathcal{O}_{PQ} \]

- \(\chi = 2B_0 \mathcal{M} \)
- Same form as for QCD with \(\text{tr} \rightarrow \text{str} \) plus one extra term (\(\mathcal{O}_{PQ} \))
- How do the LECs related to those of QCD?
Relating PQ\chiPT to \chiPT

- If choose \Sigma to lie in QCD subspace

\[\Sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \Sigma_{\text{QCD}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

and sources do not connect subspaces, then

\[\mathcal{L}_{\text{PQ}\chiPT}^{(2,4,...)}(\Sigma) \rightarrow \mathcal{L}_{\chiPT}^{(2,4,...)}(\Sigma_{\text{QCD}}) \]

- If external fields in correlation function are from sea sector, then can show that all valence and ghost contributions cancel in intermediate states
 \[\Rightarrow \Sigma \text{ takes the form given above} \]
 \[\Rightarrow \text{PQ\chiPT calculation collapses to one in } \chiPT \]

- Thus LECs in PQ\chiPT are equal to those in \chiPT
 \[\Rightarrow \text{Results in the chiral regime from PQQCD give information about physical LECs} \]
What about \mathcal{O}_{PQ}?

- Starting at NLO, at each order there are an increasing number of PQ operators that vanish on QCD subspace
- At NLO, only one such operator [Sharpe & Van de Water]

$$
\mathcal{O}_{\text{PQ}} = \text{str} \left(D_\mu \Sigma D_\nu \Sigma^\dagger D_\mu \Sigma D_\nu \Sigma^\dagger \right) \\
- \frac{1}{2} \text{str} \left(D_\mu \Sigma D_\mu \Sigma^\dagger \right)^2 - \text{str} \left(D_\mu \Sigma D_\nu \Sigma^\dagger \right) \text{str} \left(D_\mu \Sigma D_\nu \Sigma^\dagger \right) \\
+ 2 \text{str} \left(D_\mu \Sigma D_\nu \Sigma^\dagger D_\mu \Sigma D_\nu \Sigma^\dagger \right)
$$

- Vanishes if $\Sigma \to \Sigma_{\text{QCD}}$ due to Cayley-Hamilton relations for 3×3 matrices
- Does not vanish for general Σ_{PQ}
- Appears in $\mathcal{L}_{\text{PQX}}^{(4)}$ with additional LEC
- Same is true for standard χPT if $N \geq 4$
- \mathcal{O}_{PQ} contributes to $\pi \pi$ scattering at NLO, but to m_π and f_π only at NNLO
Why is \mathcal{O}_{PQ} present?

- Because PQQCD allows isolation of individual Wick contractions, unlike QCD.
- For example, $\pi^+ K^0$ scattering in QCD has two contractions:

\[
\begin{align*}
\text{Contractions in QCD:} & \quad + \\
\end{align*}
\]

- Can separate these contractions in PQQCD, e.g.

\[
\begin{align*}
\text{Contractions in PQQCD:} & \quad + \\
\end{align*}
\]

- \mathcal{O}_{PQ} contributes to the PQQCD process, but not that in QCD.
- Shows how PQQCD differs from QCD even if $m_V = m_S$.
Calculating in PQ\(\chi PT\)

- PQ Lagrangian at LO:

\[
\mathcal{L}^{(2)} = \frac{f^2}{4} \text{str} \left(D_\mu \Sigma D_\mu \Sigma^\dagger\right) - \frac{f^2}{4} \text{str}(\chi \Sigma^\dagger + \Sigma \chi^\dagger)
\]

- Insert expansion in Goldstone fields:

\[
\Sigma = \exp \left[\frac{2i}{f} \Phi(x)\right], \quad \Phi(x) = \begin{pmatrix} \phi(x) & \eta_1(x) \\ \eta_2(x) & \tilde{\phi}(x) \end{pmatrix}, \quad \text{str}\Phi = 0
\]

\[
\mathcal{L}^{(2)} = \text{str}(\partial_\mu \Phi \partial_\mu \Phi) + \text{str}(\chi \Phi^2) + \ldots
\]

\[
= \text{tr}(\partial_\mu \phi \partial_\mu \phi + \partial_\mu \eta_1 \partial_\mu \eta_2 - \partial_\mu \eta_2 \partial_\mu \eta_1 - \partial_\mu \tilde{\phi} \partial_\mu \tilde{\phi})
\]

\[
+ \text{tr} \left[(\phi^2 + \eta_1 \eta_2) \begin{pmatrix} m_V & 0 \\ 0 & m_S \end{pmatrix} \right] - \text{tr}(\tilde{\phi}^2 m_V) - \text{tr}(\eta_2 \eta_1 m_V)
\]

- \(\phi\) part is like in QCD, except includes both valence and sea quarks

- Propagator for “charged” meson \(\bar{q}_1 q_2\) (either valence or sea) is

\[
\frac{1}{(p^2 + m_{12}^2)} , \quad m_{12}^2 = (\chi_1 + \chi_2)/2
\]
LO calculation (cont.)

\[\mathcal{L}^{(2)} = \text{tr}(\partial_\mu \phi \partial_\mu \phi + \partial_\mu \eta_1 \partial_\mu \eta_2 - \partial_\mu \eta_2 \partial_\mu \eta_1 - \partial_\mu \tilde{\phi} \partial_\mu \tilde{\phi}) + \text{tr} \left[(\phi^2 + \eta_1 \eta_2) \begin{pmatrix} m_V & 0 \\ 0 & m_S \end{pmatrix} \right] - \text{tr}(\tilde{\phi}^2 m_V) - \text{tr}(\eta_2 \eta_1 m_V) \]

- \tilde{\phi} terms have wrong signs
 - Naively, propagator for “charged” ghost mesons \(\bar{q}_1 q_2 \) is \(-1/(p^2 + m_{12}^2)\), \(m_{12}^2 = (\chi_1 + \chi_2)/2 \)
 - But potential not minimized and functional integral not convergent!
 - More careful treatment of symmetries of PQQCD, maintaining convergence of ghost functional integral, concludes that naive result is OK in perturbation theory (but not non-perturbatively, e.g. in \(\epsilon \)-regime, where should change \(\tilde{\phi} \rightarrow i\tilde{\phi}, \Sigma^\dagger \rightarrow \Sigma^{-1} \) [Sharpe & Shoresh]

- Goldstone fermion propagators can have either sign (no convergence problems); actual signs important for cancellations
What about Φ_0?

- How implement $\text{str}(\Phi) = \text{tr}(\phi) - \text{tr}(\tilde{\phi}) = 0$?

 1. Use a basis of generators which is straceless:

 $\Phi = \sum_a \Phi_a T^a$ with $\text{str}(T^a) = 0$

 ▶ Analagous to not including the η' in QCD χPT

 ▶ Clumsy in practice and not used

 2. Include identity component but then “integrate out”

 $\Phi \rightarrow \Phi + \Phi_0/\sqrt{N}$ so that $\text{str} \Phi = \sqrt{N} \Phi_0$

 $\mathcal{L}_{PQX} \rightarrow \mathcal{L}_{PQX} + m_0^2 \text{str}(\Phi)^2/N$

 ▶ Calculate propagators, then send $m_0^2 \rightarrow \infty$ within them

 ▶ To make formally correct, must regularize with a cut-off (e.g. lattice)
 so that $(\partial_\mu \Phi_0)^2 < m_0^2 \Phi_0^2$ (trivial decoupling)

 ▶ Really just a trick to implement stracelessness

 ▶ Method used in practice

- Introducing Φ_0 has advantage of allowing use of “quark line” basis:

 $\Phi_{ij} \sim Q_i \overline{Q}_j$ for all i, j
Quark lines and double poles

- "Charged" particle propagators are simple:

\[\langle \Phi_{ij} \Phi_{ji} \rangle = \pm \frac{1}{p^2 + (\chi_i + \chi_j)/2} = \]

- Neutral propagators have double poles:

\[\mathcal{L}^{(2)} = \sum_{j=1}^{N+2N_V} \epsilon_j (\partial_\mu \Phi_{jj} \partial_\mu \Phi_{jj} + m_j \Phi_{jj}^2) + (m_0^2/N)(\sum_j \epsilon_j \Phi_{jj})^2 \]

\[\epsilon_j = \begin{cases} +1 & \text{valence or sea quarks} \\ -1 & \text{ghosts} \end{cases} \]

- Can simply invert with linear algebra tricks. Schematically, for external valence quarks have "hairpin" sum:

\[\text{Valence quarks: } \begin{array}{c} V \\ V \end{array} + \begin{array}{c} V \\ V \end{array} + \begin{array}{c} V \\ S \end{array} + \begin{array}{c} V \end{array} + \ldots \]
Neutral propagator

- Result after $m_0^2 \to \infty$ for $N = 3$ [Bernard & Golterman; Sharpe & Shoresh]

\[
\langle \Phi_{ii} \Phi_{jj} \rangle = \frac{\epsilon_i \delta_{ij}}{p^2 + \chi_i} - \frac{1}{N} \frac{1}{(p^2 + \chi_i)(p^2 + \chi_j)} \frac{(p^2 + \chi_{S1})(p^2 + \chi_{S2})(p^2 + \chi_{S3})}{(p^2 + M_{\eta_0}^2)(p^2 + M_\eta^2)}
\]

- Simplifies for degenerate sea quarks:

\[
\langle \Phi_{ii} \Phi_{jj} \rangle = \frac{\epsilon_i \delta_{ij}}{p^2 + \chi_i} - \frac{1}{N} \frac{1}{(p^2 + \chi_i)(p^2 + \chi_j)} (p^2 + \chi_S)
\]

 - Manifestly unphysical double pole for $\chi_i = \chi_j$
 - Residue is then $(\chi_i - \chi_S)/N$, so vanishes for physical subspace
 - Can show from symmetries of PQQCD that if charged propagators have single poles, then neutral have double (and no higher) poles [Sharpe & Shoresh]

- Propagator becomes physical if i, j are sea quarks, e.g. for degenerate sea

\[
\langle \Phi_{SS} \Phi_{SS} \rangle = \frac{1}{p^2 + \chi_S} \left(1 - \frac{1}{N} \right)
\]

 - Recover projection against η'

S. Sharpe, "\textit{χPT for LQCD (III)}", Nara, 11/7/2005 – p.31/46
Outline of Lecture 3

- Partial quenching and PQ\chi PT
 - What is partial quenching?
 - Developing PQ\chi PT
 - Results and outlook
- Application to staggered fermions
Sample calculation: m^2_π

- Calculations are straightforward extension of standard χPT
- Mass-squared of “pion” composed of valence quarks V_1, V_2
- Quark-line diagrams for 1-loop contributions

χPT

- LO four-pion vertices have single strace, so are "connected"
- Manifest cancellation between contributions from commuting and anticommuting particles
NLO result for m_{π}^2

To simplify expression for loop contributions, assume N degenerate sea quarks and $m_{V1} = m_{V2} \neq m_S$

$$m_{VV}^2 = \chi_V \left(1 + \frac{1}{N} \frac{2\chi_V - \chi_S}{\Lambda^2_x} \ln(\chi_V/\mu^2) + \frac{\chi_V - \chi_S}{N\Lambda^2_x} \right)$$

- Reduces to QCD-like result when $\chi_V \rightarrow \chi_S$
- χ_V and χ_S provide separate dials for determining $2L_8 - L_5$ and $2L_6 - L_4$
- Result in PQ mass-plane depends on physical LECs
- Unphysical nature of result clear from divergence in $\chi_S \ln \chi_V$ as $\chi_V \rightarrow 0$
- In practice, expansion breaks down only for very small χ_V

Has been used to determine $2L_8 - L_5$ which, using continuum χPT, constrains physical m_u

- Cannot determine using continuum χPT alone [Kaplan & Manohar]
- Need to use $N = 3$ or $N = 2 + 1$ sea quarks (not $N = 2$)
- Lattice results $\Rightarrow m_u \neq 0$
Status of PQ\chiPT calculations

- It is now standard to extend any \chiPT calculation to PQ\chiPT
 - Many quantities considered at NLO: pions, baryons, vector mesons, scalar mesons, heavy-light hadrons, weak matrix elements (B_K, $K \rightarrow \pi\pi$), NEDM, pion scattering, ...
 - First calculations at NNLO for pion properties
 - PQ effects also included in tm\chiPT, staggered \chiPT and mixed action \chiPT
 - Most non-trivial example is baryons, where need to use a set-up in which all three quark lines are explicit
 - Most striking result is for scalar meson correlators, where hairpin propagators lead to unphysical negative contributions at long distances

- In general, can use PQ\chiPT to determine form of expected results for individual contractions (e.g. connected and disconnected contributions to π_0 propagators in tmLQCD)
- Most extensive practical use is in MILC improved staggered simulations
- Potentially a powerful practical tool, but important to test given incomplete theoretical justification
A final fun example: L_7

$$\mathcal{L}^{(4)}_\chi = \cdots - L_7 \text{str} (\chi \Sigma^\dagger - \Sigma \chi^\dagger)^2 + \cdots$$

- Contributes to PGB masses only for non-degenerate quarks
- In QCD, only significant contribution is to m_η

$$4m_K^2 - 2m_\pi^2 - 3m_\eta^2 = \frac{32(m_K^2 - m_\pi^2)^2}{3f^2}(L_5 - 6L_8 - 12L_7) + \text{chiral logs}$$

- Direct lattice calculation of m_η possible but challenging
- Can we determine L_7 and thus m_η indirectly using PQQCD?

- **Yes, from residue of PQ double pole** [Sharpe & Shoresh]

$$\frac{\int d^3x \langle \Phi_{V_1,V_1}(t, x) \Phi_{V_2,V_2}(0) \rangle}{\int d^3x \langle \Phi_{V_1,V_2}(t, x) \Phi_{V_2,V_1}(0) \rangle_{m_{V_1}=m_{V_2}}} \rightarrow \frac{Dt}{2M_{VV}}$$

- With $N = 3$ degenerate sea quarks find:

$$D = \frac{\chi_V - \chi_S}{N} - \frac{16}{f^2} \left(L_7 + \frac{L_5}{2N}\right) (\chi_V - \chi_S)^2 + \text{known chiral logs}$$

- PQ simulations allow use of multiple $\chi_V \Rightarrow \text{better signal}$?
Outline of Lecture 3

- Partial quenching and PQ\chi PT
 - What is partial quenching?
 - Developing PQ\chi PT
 - Results and outlook
- Application to staggered fermions
References for staggered fermions

References for staggered χPT

References for staggered χPT (cont.)

Summary on SχPT

- Need to use PQχPT + add in a^2 terms + account for 4-th root by factors of 1/4 determined using quark line diagrams

- Dominant effect is to chiral logarithms:
 - pions in loops have a^2 corrections to their masses,
 - most do not become massless in the chiral limit
 - reduces the curvature due to the chiral logs
 - essential to fit the MILC pion, kaon and heavy-light data

- For operators, also have extra mixing at $O(a^2)$

- Staggered complications ⇒ mixed action (overlap/DW valence and staggered sea)?
Taste Symmetry Breaking

- Staggered quarks come in 4 tastes ⇒ staggered mesons come in 16 tastes
- Labeled by the taste matrix in the lattice operator: \(\pi_T \equiv \bar{Q}_i (\gamma_5 \otimes \xi_T) Q_j \)

<table>
<thead>
<tr>
<th>Taste</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Singlet</td>
<td>(\xi_1)</td>
</tr>
<tr>
<td>1 Goldstone</td>
<td>(\xi_5)</td>
</tr>
<tr>
<td>4 Vector</td>
<td>(\xi_\mu)</td>
</tr>
<tr>
<td>4 Axial</td>
<td>(\xi_{\mu 5})</td>
</tr>
<tr>
<td>6 Tensor</td>
<td>(\xi_{\mu \nu})</td>
</tr>
</tbody>
</table>

- On the lattice, quarks of one taste can turn into another by exchanging high-momentum gluons
- Breaks the continuum \(SU(4) \) taste symmetry at \(O(a^2) \)
- Discretization errors numerically significant at present lattice spacings (MILC)
- Fits of staggered lattice data show that must account for taste violations in continuum and chiral extrapolations ⇒ staggered chiral perturbation theory (S\(\chi\)PT)

S. Sharpe, “\(\chi\)PT for LQCD (III)”, Nara, 11/7/2005 – p.42/46
SχPT Power-Counting

- Because the Symanzik action contains explicit powers of the lattice spacing, must incorporate a into the SχPT power-counting scheme.

- Taste breaking discretization errors are $\propto a^2 \alpha_V^2 (q^* = \pi/a)$
 - a^2 because come from dimension 6 operators in the effective action
 - α^2 because require two gluon exchange

- We observe in lattice simulations that the lattice Goldstone PGB mass is of the same size as the splittings among the other tastes.
 - $\Rightarrow a^2 \alpha_V^2 \sim m_{PGB}^2$
 - Define $a_\alpha^2 \equiv a^2 \alpha_V^2 (q^* = \pi/a)$ for later use

- Therefore use the following (standard) SχPT power-counting scheme:
 - $p_{PGB}^2 \sim m_q \sim a_\alpha^2$

★ Note that this scheme is phenomenologically based on the parameters of current staggered simulations ★
Step 3: The Staggered Chiral Lagrangian

- The lowest-order, $\mathcal{O}(p_{\text{PGB}}^2, m_q, a_\alpha^2)$, staggered chiral Lagrangian is:

$$\mathcal{L}_{S\chi\text{PT}} = \frac{f^2}{8} \text{Tr} (\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{1}{4} \mu f^2 \text{Tr} (\mathcal{M} \Sigma + \mathcal{M} \Sigma^\dagger) + a_\alpha^2 \mathcal{V}$$

- Kinetic energy and mass terms just like the LO continuum chiral Lagrangian – but with more tastes

- **Staggered potential**, \mathcal{V}, comes from dimension 6 operators in the Symanzik action

 ▶ Contains lattice effects
 ▶ Determine \mathcal{V} by promoting taste matrices to spurion fields – just like quark mass matrix

- Staggered potential leads to important PGB properties, one of which is that it *splits the tree-level PGB masses into degenerate groups*:

$$\left(m_\pi^2 \right)_{\text{LO}} = 2\mu \frac{m_i + m_j}{2} + a_\alpha^2 \Delta_F$$

▶ Δ_F different for each $SO(4)$-taste irrep: $\xi_5, \xi_{\mu 5}, \xi_{\mu \nu}, \xi_\mu, \xi_I$

▶ *Recall that we observe this splitting in the lattice data!*

- Also produces interaction vertices at higher-orders in $S\chi\text{PT}
B_K at NLO – Explicit Example

- Show for *degenerate valence quarks*
 - Simplest example – only 5 linear combinations of operators contribute
 - Sum over PGB tastes (B') in logs generic trait of $S\chi$PT expressions

$$
B_K = B_0 \left\{ 1 + \frac{1}{1024\pi^2 f_{K_P}^2} \sum_{B'} f^{B'} m_{K_{B'}}^2 \left[3 \log \left(\frac{m_{K_{B'}}^2}{\Lambda_{\chi}^2} \right) + 1 \right] \right\} + A \\
+ B \left[\frac{3 m_{K_P}^2}{16 f_{K_P}^2} + D \frac{3(m_u + m_d + m_s)}{16 f_{K_P}^2} \right] \\
+ \frac{3}{512\pi^2 f_{K_P}^2} \sum_{B'} \left[\log \left(\frac{m_{K_{B'}}^2}{\Lambda_{\chi}^2} \right) + 1 \right] \sum_B \left(\frac{C_{\chi}^{1B}}{f^4} g^{BB'} - \frac{C_{\chi}^{2B}}{f^4} h^{BB'} \right)
$$

- **Additive** “corrections” from perturbative and discretization errors can in principle be determined and removed separately at each lattice spacing
- Removal of **Multiplicative** “corrections” from perturbative and discretization errors requires fit to multiple lattice spacings

S. Sharpe, “χPT for LQCD (III)”, Nara, 11/7/2005 – p.45/46
References for mixed action χPT