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RBC calculations of nucleon structure: form factors, moments of structure functions and nucleon decay matrix elements,

• using DWF and DBW2 actions.

• Based on the works by Yasumichi Aoki, Tom Blum, Kostas Orginos, Shoichi Sasaki, ...

Domain wall fermions (DWF) preserves almost exact chiral symmetry on the lattice:

• by introducing a fictitious fifth dimension in which the symmetry violation is exponentially suppressed.

DBW2 (“doubly blocked Wilson 2”) action improves approach to the continuum:

• by adding rectangular (2× 1) Wilson loops to the action.

By combining the two, the “residual mass,” which controls low energy chiral behavior, is driven to

• amres ∼ O(10−4) or mres < MeV.

∗Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton,
NY 11973, USA
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Numerical calculation: we like to have

• good chiral behavior, i.e. close enough to the continuum, and

• big enough volume.

Improved gauge actions help both. DBW21, in particular,

SG = β[c0
∑

W1,1 + c1
∑

W1,2],

with c0 + 8c1 = 1, and c1 = −1.4069.

Fermion action: DWF,

Quenched calculation: about 400 lattices, complete,

• β = 0.87, at the chiral limit, amρ = 0.592(9) (so a−1 ∼ 1.3GeV),

• Ls = 16, M5 = 1.8, amres ∼ 5× 10−3,

• 83 × 24× 16 (∼ (1.2fm)3) and 163 × 32× 16 (∼ (2.4fm)3) volumes,

• mN/mρ ∼ 1.3.

Dynamical calculation (Nf = 2): about 50 lattice at each of mfa = 0.04, 0.03, and 0.02, ongoing,

• β = 0.8 (mρ and Sommer scales agree with a−1 ∼ 1.7GeV),

• Ls = 12, M5 = 1.8, mres ∼ 2.5 MeV,

• 163 × 32× 16 (∼ (2.0fm)3) volume,

• mN/mρ ∼ 1.35.

1QCD-TARO collaboration, Nucl. Phys. B577, 263 (2000). See also RBC collaboration, Phys. Rev. D69, 074504 (2004); hep-lat/0211023.
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Axial charge: from neutron β decay, we know g
V

= GF cos θc and g
A
/g

V
= 1.2670(30)2:

• g
V
∝ limq2→0 g

V
(q2) with 〈n|V −

µ (x)|p〉 = iūn[γµgV
(q2) + qλσλµgM

(q2)]upe
−iqx,

• g
A
∝ limq2→0 g

A
(q2) with 〈n|A−

µ (x)|p〉 = iūnγ5[γµgA
(q2) + qµgP

(q2)]upe
−iqx.

On the lattice, in general, we calculate the relevant matrix elements of these currents

• with a lattice cutoff, a−1 ∼ 1-2 GeV,

• and extrapolate to the continuum, a → 0,

introducing lattice renormalization: grenormalized
V ,A

= Z
V ,Aglattice

V ,A
.

Also, unwanted lattice artefact may result in unphysical mixing of chirally distinct operators.

DWF makes g
A
/g

V
particularly easy, because:

• the chiral symmetry is almost exact, and

• maintains Z
A

= Z
V
, so that glattice

A
/glattice

V
directly yields the renormalized value.

2The Particle Data Group.
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Historically

• NR quark model gives 5/3,

• MIT bag model gives 1.07,

• lattice calculations with Wilson or clover fermions typically underestimates by up to 25 %:

type group fermion lattice β volume configs mπL g
A

quenched KEKa Wilson 163 × 20 5.7 (2.2fm)3 260 ≥ 5.9 0.985(25)
Liu et alb Wilson 163 × 24 6.0 (1.5fm)3 24 ≥ 5.8 1.20(10)
DESYc Wilson 163 × 32 6.0 (1.5fm)3 1000 ≥ 4.8 1.074(90)
LHPC-SESAMd Wilson 163 × 32 6.0 (1.5fm)3 200 ≥ 4.8 1.129(98)
QCDSFe Wilson 243 × 48 6.2 (1.6fm)3 O(300) 1.14(3)

323 × 48 6.4 (1.6fm)3 O(100)
163 × 32 6.0 (1.5fm)3 O(500)

QCDSF-UKQCDf Clover 243 × 48 6.2 (1.6fm)3 O(300) 1.135(34)
323 × 48 6.4 (1.6fm)3 O(100)

full(Nf = 2) LHPC-SESAMd Wilson 163 × 32 5.5 (1.7fm)3 100 ≥ 4.2 0.914(106)
SESAMg Wilson 163 × 32 5.6 (1.5fm)3 200 ≥ 4.5 0.907(20)

aM. Fukugita, Y. Kuramashi, M. Okawa and A. Ukawa, Phys. Rev. Lett. 75, 2092 (1995).
bK.F. Liu, S.J. Dong, T. Draper and J.M. Wu, Phys. Rev. D49, 4755 (1994).
cM. Göckeler et al, Phys. Rev. D53, 2317 (1996).
dD. Dolgov et al, hep-lat/0201021.
eS. Capitani et al, Nucl. Phys. B (Proc. Suppl.) 79, 548 (1999).
fR. Horsley et al, Nucl. Phys. B (Proc. Suppl.) 94, 307 (2001).
gS. Güsken et al, Phys. Rev. D59, 114502 (1999)

– with Z
A
6= Z

V
and other renormalization complications.
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Our formulation follows the standard one,

• Two-point function: G
N
(t) = Tr[(1 + γt)

∑
~x

〈TB1(x)B1(0)〉], using B1 = εabc(u
T
a Cγ5db)uc for proton,

• Three-point functions,

– vector: Gu,d
V

(t, t′) = Tr[(1 + γt)
∑
~x′

∑
~x

〈TB1(x
′)V u,d

t (x)B1(0)〉],

– axial: Gu,d
A

(t, t′) =
1

3

∑
i=x,y,z

Tr[(1 + γt)γiγ5
∑
~x′

∑
~x

〈TB1(x
′)Au,d

i (x)B1(0)〉].

with fixed t′ = tsource − tsink and t < t′.

• From the lattice estimate

glattice
Γ

=
Gu

Γ
(t, t′)−Gd

Γ
(t, t′)

G
N
(t)

,

with Γ = V or A, the renormalized value
gren

Γ
= Z

Γ
glattice

Γ
,

is obtained.

• Non-perturbative renormalizations, defined by

[ūΓd]ren = Z
Γ
[ūΓd]0,

satisfies Z
A

= Z
V

well, so that g
A

g
V

ren

=

Gu
A
(t, t′)−Gd

A
(t, t′)

Gu
V
(t, t′)−Gd

V
(t, t′)

lattice

.

g
A

is also described as ∆u−∆d.
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Numerical calculations with Wilson (single plaquette) gauge action:

• RIKEN-BNL-Columbia QCDSP,

• 400 gauge configurations, using a heat-bath algorithm,

• β = 6.0, 163 × 32× 16, M5 = 1.8,

• source at t = 5, sink at 21, current insertions in between.

Z
V

= 1/glattice
V

is well-behaved,

0.78

0.77

0.76

0.75

0.74

Z V

0.060.040.020.00

mf

0.780

0.775

0.770

0.765

0.760

0.755

0.750

Z
V

1614121086420

t - tsrc

m f =0.02

0.780

0.775

0.770

0.765

0.760

0.755

0.750

Z
V

1614121086420

t - tsrc

m f =0.03

0.780

0.775

0.770

0.765

0.760

0.755

0.750

Z
V

1614121086420

t - tsrc

m f =0.04

0.780

0.775

0.770

0.765

0.760

0.755

0.750

Z
V

1614121086420

t - tsrc

m f =0.05

• the value 0.764(2) at mf = 0.02 agrees well with Z
A

= 0.7555(3) from

– 〈Aconserved
µ (t)q̄γ5q(0)〉 = Z

A
〈Alocal

µ (t)q̄γ5q(0)〉 (RBC hep-lat/0007038, to appear in Phys. Rev. D),

• linear fit gives Z
V

= 0.760(7) at mf = 0, and quadratic fit, 0.761(5).
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∆u, ∆d, and g
A
/g

V
(averaged in 10 ≤ t ≤ 16):
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• linear extrapolation yields 0.81(11) at mf = 0, and simlarly small values for

– ∆q/g
V

= 0.49(12) and

– (δq/g
V
)lattice = 0.47(10) (with a preliminary Z

T
∼ 1.1).

• While relevant three-point functions are well behaved in DWF, and Z
V

= Z
A

is well satisfied, 0.760(7) and 0.7555(3).
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Why so small?

• finite lattice volume 3,

• excited states (small separation between tsource and tsink),

• quenching (zero modes, absent pion cloud, ...).

To investigate size-dependence, we simultaneously need

• good chiral behavior, i.e. close enough to the continuum, and

• big enough volume.

Improved gauge actions help both. DBW24, in particular,

SG = β[c0
∑

W1,1 + c1
∑

W1,2],

with c0 + 8c1 = 1 and c1 = −1.4069:

• very small residual chiral symmetry breaking, amres < 10−3,

• at the chiral limit, amρ = 0.592(9) (so a−1 ∼ 1.3GeV), mρ/mN ∼ 0.8,

• mπ(mf = 0.02) ∼ 0.3a−1.

3R.L. Jaffe, Phys .Lett. B529:105, 2002; hep-ph/0108015. See also T.D. Cohen, Phys. Lett. B529:50, 2002; hep-lat/0112014.
4QCD-TARO collaboration, Nucl. Phys. B577, 263 (2000); RBC collaboration, in preparation.
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DBW2 calculations are performed at a ∼ 0.15 fm (β = 0.87) with both wall and sequential sources on

• 83 × 24× 16 (∼ (1.2fm)3), 400 configurations (wall) and 160 (sequential),

• 163 × 32× 16 (∼ (2.4fm)3), 100 configurations (wall and sequential),

• source-sink separation of about 1.5 fm,

• mf = 0.02, 0.04, ...: mπ ≥ 390MeV, mπL ≥ 4.8 and 2.4.

Renormalization factors: Oren(µ) = ZO(aµ)Olattice(a).
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• Z
V

shows slight quadratic dependence on mf as expected: V conserved
µ = Z

V
V local

µ +O(m2
fa

2),

– yielding a value Z
V

= 0.784(15),

– agrees well with Z
A

= 0.77759(45) 5.

5RBC Collaboration, in preparation: this value is obtained from a relation 〈Aconserved
µ

(t)[q̄γ5q](0)〉 = Z
A
〈Alocal

µ (t)[q̄γ5q](0)〉.
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Bare glattice
A

from wall source show volume dependence at medium mf ((2.4fm)3 (filled) and (1.2fm)3 (open) volumes):
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Bare ∆ulattice and ∆dlattice from sequential source ((2.4fm)3):
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Bare glattice
V

from sequential source ((2.4fm)3):
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(g
A
/g

V
)lattice from sequential source ((2.4fm)3):
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(g
A
/g

V
)lattice = (g

A
/g

V
)ren: mf and volume dependence in bare and physical scales (mρ and Sommer):
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• Clear volume dependence is seen between (2.4fm)3 and (1.2fm)3 volumes.

• The large volume results (sequential)

– show a very mild mf dependence,

– extrapolate to about 8 % under estimation, g
A

= 1.15(11).
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Alternatively we can use glattice
A

× Z
A
:
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exp: gA=1.267
 

agree well with (g
A
/g

V
)lattice in the chiral limit, and and an expected difference seen away from there.
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New, this year, of axial charge: dynamical result seems to follow the quenched 6.

6Note the lattice scales obtained from mρ and Sommer scale agree, with a−1 ∼ 1.7 GeV.
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Structure functions: measured in deep inelastic scatterings (and RHIC/Spin):

• DIS

N

e e′

X

∣∣∣∣∣A4π
∣∣∣∣∣
2

=
α2

Q4 l
µνWµν

W µν = W [µν] + W {µν}

W {µν}(x, Q2) =

(
−gµν +

qµqν

q2

)
F1(x, Q2) +

(
P µ − ν

q2q
µ
) (

P ν − ν

q2q
ν
)

F2(x, Q2)

ν

W [µν](x, Q2) = iεµνρσqρ

(
Sσ

ν
(g1(x, Q2) + g2(x, Q2))− q · SPσ

ν2 g2(x, Q2)

)

with ν = q · P , S2 = −M 2, x = Q2/2ν.

• The same structure funtions appear in RHIC/Spin (which also provides h1(x, Q2)).

Moments of the structure functions are accessible on the lattice:

2
∫ 1

0
dxxn−1F1(x, Q2) =

∑
q=u,d

c
(q)
1,n(µ

2/Q2, g(µ)) 〈xn〉q(µ) +O(1/Q2),

∫ 1

0
dxxn−2F2(x, Q2) =

∑
f=u,d

c
(q)
2,n(µ

2/Q2, g(µ)) 〈xn〉q(µ) +O(1/Q2),

2
∫ 1

0
dxxng1(x, Q2) =

∑
q=u,d

e
(q)
1,n(µ

2/Q2, g(µ)) 〈xn〉∆q(µ) +O(1/Q2),

2
∫ 1

0
dxxng2(x, Q2) =

1

2

n

n + 1

∑
q=u,d

[eq
2,n(µ

2/Q2, g(µ)) dq
n(µ)− 2eq

1,n(µ
2/Q2, g(µ)) 〈xn〉∆q(µ)] +O(1/Q2)

• c1, c2, e1, and e2 are the Wilson coefficients (perturbative),

• 〈xn〉q(µ), 〈xn〉∆q(µ) and dn are forward nucleon matrix elements of certain local operators.
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Lattice operators:

• Unpolarized (F1/F2):

1

2

∑
s
〈P, S|Oq

{µ1µ2···µn}|P, S〉 = 2〈xn−1〉q(µ)[Pµ1
Pµ2

· · · Pµn
+ · · · − (trace)]

Oq
µ1µ2···µn

= q̄

( i

2

)n−1

γµ1

↔
Dµ2

· · ·
↔
Dµn

−(trace)

 q

On the lattice we can measure: 〈x〉q, 〈x2〉q and 〈x3〉q.

• Polarized (g1/g2) and transversity (h1):

−〈P, S|O5q
{σµ1µ2···µn}|P, S〉 =

2

n + 1
〈xn〉∆q(µ)[SσPµ1

Pµ2
· · · Pµn

+ · · · − (traces)]

O5q
σµ1µ2···µn

= q̄

[(
i

2

)n

γ5γσ

↔
Dµ1

· · ·
↔
Dµn

−(traces)

]
q

〈P, S|O[5]q
[σ{µ1]µ2···µn}|P, S〉 =

1

n + 1
dq

n(µ)[(SσPµ1
− Sµ1

Pσ)Pµ2
· · · Pµn

+ · · · − (traces)]

O[5]q
[σµ1]µ2···µn

= q̄

[(
i

2

)n

γ5γ[σ
↔
Dµ1] · · ·

↔
Dµn

−(traces)

]
q

〈P, S|Oσq
ρν{µ1µ2···µn}|P, S〉 =

2

mN
〈xn〉δq[(SρPν − SνPρ)Pµ1

Pµ2
· · · Pµn

+ · · · − (traces)]

Oσq
ρνµ1µ2···µn

= q̄[

(
i

2

)n

γ5σρν

↔
Dµ1

· · ·
↔
Dµn

−(traces)]q

On the lattice we can measure: 〈1〉∆q (gA), 〈x〉∆q, 〈x2〉∆q, d1, d2, 〈1〉δq and 〈x〉δq.

• Higher moment operators mix with lower dimensional ones.

• Only 〈x〉q, 〈1〉∆q, 〈x〉∆q, d1, and 〈1〉δq can be measured with ~P = 0.
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Renormalization: Oren = ZO(aµ)Olat(a),

• lattice complications: operator mixing from broken Lorentz or chiral symmetry,

• NPR is required when mixing with lower dimensional operator occurs.

We calculate ZO(aµ) non-perturbatively in RI/MOM scheme7 with perturbative matching to MS.

• compute off-shell matrix element of the operator, O, in Landau gauge,

• impose a MOM scheme condition Tr VO(p2)Γ
∣∣∣
p2=µ2

ZO

Zq
= 1,

– VO(p2) is the relevant amputated vertex,

– Γ is an appropriate projector,

• extrapolate to the chiral limit, defining the RI scheme,

• in an appropriate window, ΛQCD � µ2 � a−1, a scale invariant

Zrgi =
Z(µ2)

C(µ2)

is obtained, with the operator running C(µ2) in the continuum perturbation theory.

• Now we can perturbatively match to e.g. MS.

Works nicely with DWF.

7Martinelli et. al, Nucl. Phys. B455, 81 (1995).
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Quark density 〈x〉u−d, calculated with Oq
44 = q̄

γ4
↔
D4 −

1

3

3∑
k=1

γk

↔
Dk

 q.

• Quenched calculation complete with NPR,

– Z = 1.02(10), with MS 2 GeV, 2-loop running,

– no curvature seen in the chiral limit,

– 〈x〉u/〈x〉d = 2.41(4) at the chiral limit.

• Dynamical calculation ongoing, lacks NPR,
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Polarization, 〈x〉∆u−∆d, calculated with O5q
34 =

1

4
q̄γ5

[
γ3

↔
D4 +γ4

↔
D3

]
q.

• Quenched calculation complete with NPR,

– Z = 1.02(9), with MS 2 GeV, 2-loop running,

– no curvature seen in the chiral limit.

• Dynamical calculation ongoing.
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Transversity, 〈1〉δu−δd, calculated with Oσq
34 = q̄γ5σ34q.

• Quenched calculation complete with NPR,

– 〈1〉δu−δd = 1.193(30), MS (2 GeV) 2-loop running,

– QCDSF (quenched continuum): 〈1〉δu−δd = 1.214(40), MS (1 GeV) 1-loop perturbative.

• Dynamical calculation ongoing, lacks NPR,



22

d1: twist-3 part of g2 (〈x〉∆q is twist-2),

2
∫ 1

0
dxxng2(x, Q2) =

1

2

n

n + 1

∑
q=u,d

[eq
2,n(µ

2/Q2, g(µ)) dq
n(µ)− 2eq

1,n(µ
2/Q2, g(µ)) 〈xn〉∆q(µ)],

calculated with O[5]q
[σµ1]µ2···µn

= q̄

[(
i

2

)n

γ5γ[σ
↔
Dµ1] · · ·

↔
Dµn

−traces

]
q.

• negligible in Wandzura-Wilczek relation, g2(x) = −g1(x) +
∫ 1

x

dy

y
g1(y),

• but need not be small in a confining theory (Jaffe and Ji, Phys. Rev. D43, 91),

quenched unrenormalized,

• small in the chiral limit (no power divergent
mixing),

• disagree with Wilson fermion results (which
suffer from power divergent mixing)?

dynamical unrenormalized,

• small in the chiral limit.
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Nucleon decay (Yasumichi Aoki): proton decay with dimension 6 operators such as

〈π0e+|qqql|p〉

or more precisely the hadronic matrix elements in general take the form of

〈π0|iεijk(u
iTCP

L/R
dj)P

L
uk|p〉

(SUSY) GUT processes: classification by SU(3)× SU(2)×U(1) leads to a complete set of operators. Relevant for p/n
decay are,

〈π0|iεijk(u
iTCP

L/R
dj)P

L
uk|p〉, 〈π+|iεijk(u

iTCP
L/R

dj)P
L
dk|p〉,

〈K0|iεijk(u
iTCP

L/R
sj)P

L
uk|p〉, 〈K+|iεijk(u

iTCP
L/R

sj)P
L
dk|p〉,

〈K+|iεijk(u
iTCP

L/R
dj)P

L
sk|p〉, 〈K0|iεijk(u

iTCP
L/R

sj)P
L
dk|n〉,

〈η|iεijk(u
iTCP

L/R
dj)P

L
uk|p〉,

and those obtained through the exchange of u and d.

Lattice methods:

• indirect: chiral perturbation (tree level) + low-energy constant (lattice), ie

Lχ(mesons and baryons: D, F, fmeson, mbaryon) + (baryon decay interaction: α, β),

• direct: calculate all the relevant 2- and 4-point functions on the lattice.
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Issues:

• direct method is about 10 times more expensive,

• indirect and direct results disagree (Gavela et al (1989)),

• |indirect| = |direct|+ ∼ 50 % (JLQCD (2000)).

Direct method:
〈π0|iεijk(u

iTCP
L/R

dj)P
L
uk|p〉 = P

L
[W0(q

2)−Wq(q
2)i(γq)]up,

where q is the momentum transfer of p → π0.

• as i(γq)ve ∼ meve is negligible, we need to extract W0,

• yet the mixing of Wq is inevitable because we also need to project to positive parity proton,

tr

(
P

L
[W0 −Wqi(γq)]

1 + γ4

2

)
= W0 − iq4Wq,

• we go around this by injecting finite momentum (JLQCD, PRD 62, 014506 (2000)),

tr

(
P

L
[W0 −Wqi(γq)]

1 + γ4

2
iγj

)
= qjWq.

Slightly different sequential propagators are used.
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Remaining problems:

• chiral symmetry,

– previous studies used Wilson fermions which explicitly break chiral symmetry,

Ocont
RL

= ZOlatt
RL

+ ZmixO
latt
LL

+ Z ′
mixO

latt
γµL

– so the results need not match the chiral perturbation,

– with DWF better chiral symmetry, the indirect method may work.

• O(a) scaling violation,

• quenched approximation.

DWF:

• good chiral symmetry, Ocont
RL

= ZOlatt
RL

,

– should match the chiral perturbation at finite a,

– if the low-energy coefficients are calculated on the lattice,

– note fπ and g
A

(=D + F ) are consistent with experiment within a few % even at finite a,

• scaling violation starts at O(a2),
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Renormalization: NPR works well, one-loop matching from MOM to MS(NDR), two-loop running to 2 GeV.
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Quenched results: the direct and indirect methods disagree with each other. We have to

• follow through the direct method, or

• work out higher order chiral pertubation.
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Quenching error: estimated in the indirect method, appear small from
1

2
ms ≤ msea ≤ ms.
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The dynamical result shows stronger dependence on
mπ, but the extrapolation to the chiral limit is consis-
tent with that of the quenched within ∼ 20 % error.

Summary of the low energy parameter of nucleon de-
cay at the renormalization scale µ = 2 GeV. Quoted
errors for DWF are statistical only. α + β = 0 within
the error.

Fermion Wilsona DWF

Nf 0 0 2
a [fm] 0 0.15 0.12

|α| [GeV3] 0.0090(09)(+5
−19) 0.010(1) 0.012(2)

|β| [GeV3] 0.0096(09)(+6
−20) 0.011(1) 0.012(2)

aTsutsui et al., [CP-PACS Collaboration], arXiv:hep-lat/0402026.

Need to explore much lighter quark mass with dynamical flavors. The direct method is favored.
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New, this year, are

• axial charge

– dynamical result seems to follow the quenched,

• quark density 〈x〉u−d,

– quenched calculation complete with NPR (no curvature seen in the chiral limit),

– dynamical calculation ongoing, lacks NPR,

• polarization 〈x〉∆u−∆d,

– quenched calculation complete with NPR (no curvature seen in the chiral limit),

– dynamical calculation ongoing, lacks NPR,

• transversity, 〈x〉δu−δd,

– quenched calculation complete with NPR,

– dynamical calculation ongoing, lacks NPR,

• d1: twist-3 part of g2 (〈x〉∆q is twist-2),

– negligible in Wandzura-Wilczek relation of g1 and g2,

– but need not be small in a confining theory (Jaffe and Ji, Phys. Rev. D43, 91),

– small in the chiral limit in both quenched and dynamical (unrenormalized),

– disagree with quenched Wilson fermion results (which suffer from power divergent mixing)?

• Nucleon decay:

– quenched calculation complete with NPR, in favor of the direct method,

– dynamical calculation well under way.
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Conclusions

• Quenched calculations are almost complete with NPR.

• Nf = 2 dynamical calculations are well under way.

• Axial charge: dynamical result seems to follow the quenched,

– seem to agree well with the experiment,

– no curvature seen down to 390 MeV pion mass.

• Moments of structure functions: quenched results almost complete with NPR,

– no curvature seen in 〈x〉u−d, 〈x〉∆u−∆d and 〈1〉δu−δd down to 390 MeV pion mass,

dynamical calculations are ongoing,

– d1 in the chiral limit seems small in both quenched and dynamical.

• Nucleon decay: quenched calculation almost complete with NPR,

– favors the direct method,

dynamical calculation well under way.

Immediate futre

• Publish quenched results for structure functions and nucleon decay.

• Finish ongoing dynamical calculations (QCDSP/QCDOC).

• Explore lighter quark mass and (2+1)-flavor dynamical (QCDOC).

• Turn on observables with finite momentum: some form factors, e.g. F1, F2, gP and electric dipole and higher
moments of the structure functions.


