Nucleon Matrix Elements with Domain Wall Fermions

Shigemi Ohta* [RBC collaboration]
ILFT 2004 (Shuzenji), September 22, 2004

RBC calculations of nucleon structure: form factors, moments of structure functions and nucleon decay matrix elements,

- using DWF and DBW2 actions.
- Based on the works by Yasumichi Aoki, Tom Blum, Kostas Orginos, Shoichi Sasaki, ...

Domain wall fermions (DWF) preserves almost exact chiral symmetry on the lattice:

- by introducing a fictitious fifth dimension in which the symmetry violation is exponentially suppressed.

DBW2 ("doubly blocked Wilson 2") action improves approach to the continuum:

- by adding rectangular (2×1) Wilson loops to the action.

By combining the two, the "residual mass," which controls low energy chiral behavior, is driven to

- $a m_{\text {res }} \sim O\left(10^{-4}\right)$ or $m_{\text {res }}<\mathrm{MeV}$.

[^0]Numerical calculation: we like to have

- good chiral behavior, i.e. close enough to the continuum, and
- big enough volume.

Improved gauge actions help both. DBW2 ${ }^{1}$, in particular,

$$
S_{G}=\beta\left[c_{0} \sum W_{1,1}+c_{1} \sum W_{1,2}\right]
$$

with $c_{0}+8 c_{1}=1$, and $c_{1}=-1.4069$.
Fermion action: DWF,

Quenched calculation: about 400 lattices, complete,

- $\beta=0.87$, at the chiral limit, $a m_{\rho}=0.592(9)\left(\right.$ so $\left.a^{-1} \sim 1.3 \mathrm{GeV}\right)$,
- $L_{s}=16, M_{5}=1.8, a m_{\mathrm{res}} \sim 5 \times 10^{-3}$,
- $8^{3} \times 24 \times 16\left(\sim(1.2 \mathrm{fm})^{3}\right)$ and $16^{3} \times 32 \times 16\left(\sim(2.4 \mathrm{fm})^{3}\right)$ volumes,
- $m_{N} / m_{\rho} \sim 1.3$.

Dynamical calculation $\left(N_{f}=2\right)$: about 50 lattice at each of $m_{f} a=0.04,0.03$, and 0.02 , ongoing,

- $\beta=0.8\left(m_{\rho}\right.$ and Sommer scales agree with $\left.a^{-1} \sim 1.7 \mathrm{GeV}\right)$,
- $L_{s}=12, M_{5}=1.8, m_{\text {res }} \sim 2.5 \mathrm{MeV}$,
- $16^{3} \times 32 \times 16\left(\sim(2.0 \mathrm{fm})^{3}\right)$ volume,
- $m_{N} / m_{\rho} \sim 1.35$.

[^1]Axial charge: from neutron β decay, we know $g_{V}=G_{F} \cos \theta_{c}$ and $g_{A} / g_{V}=1.2670(30)^{2}$:

- $g_{V} \propto \lim _{q^{2} \rightarrow 0} g_{V}\left(q^{2}\right)$ with $\langle n| V_{\mu}^{-}(x)|p\rangle=i \bar{u}_{n}\left[\gamma_{\mu} g_{V}\left(q^{2}\right)+q_{\lambda} \sigma_{\lambda \mu} g_{M}\left(q^{2}\right)\right] u_{p} e^{-i q x}$,
- $g_{A} \propto \lim _{q^{2} \rightarrow 0} g_{A}\left(q^{2}\right)$ with $\langle n| A_{\mu}^{-}(x)|p\rangle=i \bar{u}_{n} \gamma_{5}\left[\gamma_{\mu} g_{A}\left(q^{2}\right)+q_{\mu} g_{P}\left(q^{2}\right)\right] u_{p} e^{-i q x}$.

On the lattice, in general, we calculate the relevant matrix elements of these currents

- with a lattice cutoff, $a^{-1} \sim 1-2 \mathrm{GeV}$,
- and extrapolate to the continuum, $a \rightarrow 0$,
introducing lattice renormalization: $g_{V, A}^{\text {renormalized }}=Z_{V, A} g_{V, A}^{\text {lattice }}$.

Also, unwanted lattice artefact may result in unphysical mixing of chirally distinct operators.

DWF makes g_{A} / g_{V} particularly easy, because:

- the chiral symmetry is almost exact, and
- maintains $Z_{A}=Z_{V}$, so that $g_{A}^{\text {lattice }} / g_{V}^{\text {lattice }}$ directly yields the renormalized value.

[^2]
Historically

- NR quark model gives $5 / 3$,
- MIT bag model gives 1.07,
- lattice calculations with Wilson or clover fermions typically underestimates by up to 25% :

type	group	fermion	lattice	β	volume	configs	$m_{\pi} L$	g_{A}	
quenched	KEK a	Wilson	$16^{3} \times 20$	5.7	$(2.2 \mathrm{fm})^{3}$	260	≥ 5.9	$0.985(25)$	
	Liu et al b	Wilson	$16^{3} \times 24$	6.0	$(1.5 \mathrm{fm})^{3}$	24	≥ 5.8	$1.20(10)$	
	DESY c	Wilson	$16^{3} \times 32$	6.0	$\left(1.5 \mathrm{fm}^{3}\right)^{3}$	1000	≥ 4.8	$1.074(90)$	
	LHPC-SESAM d	Wilson	$16^{3} \times 32$	6.0	$(1.5 \mathrm{fm})^{3}$	200	≥ 4.8	$1.129(98)$	
	QCDSF e	Wilson	$24^{3} \times 48$	6.2	$(1.6 \mathrm{fm})^{3}$	$\mathrm{O}(300)$		$1.14(3)$	
			$32^{3} \times 48$	6.4	$(1.6 \mathrm{fm})^{3}$	$\mathrm{O}(100)$			
			$16^{3} \times 32$	6.0	$(1.5 \mathrm{fm})^{3}$	$\mathrm{O}(500)$			
	QCDSF-UKQCD f	Clover	$24^{3} \times 48$	6.2	$(1.6 \mathrm{fm})^{3}$	$\mathrm{O}(300)$		$1.135(34)$	
full $\left(N_{f}=2\right)$	LHPC-SESAM d		Wilson	$16^{3} \times 32$	5.5	$(1.7 \mathrm{fm})^{3}$	100	≥ 4.2	$0.914(106)$
	SESAM g	Wilson	$16^{3} \times 32$	5.6	$(1.5 \mathrm{fm})^{3}$	200	≥ 4.5	$0.907(20)$	

${ }^{a}$ M. Fukugita, Y. Kuramashi, M. Okawa and A. Ukawa, Phys. Rev. Lett. 75, 2092 (1995).
${ }^{b}$ K.F. Liu, S.J. Dong, T. Draper and J.M. Wu, Phys. Rev. D49, 4755 (1994).
${ }^{c}$ M. Göckeler et al, Phys. Rev. D53, 2317 (1996).
${ }^{d}$ D. Dolgov et al, hep-lat/0201021.
${ }^{e}$ S. Capitani et al, Nucl. Phys. B (Proc. Suppl.) 79, 548 (1999).
${ }^{f}$ R. Horsley et al, Nucl. Phys. B (Proc. Suppl.) 94, 307 (2001).
${ }^{g}$ S. Güsken et al, Phys. Rev. D59, 114502 (1999)

- with $Z_{A} \neq Z_{V}$ and other renormalization complications.

Our formulation follows the standard one,

- Two-point function: $G_{N}(t)=\operatorname{Tr}\left[\left(1+\gamma_{t}\right) \sum_{\vec{x}}\left\langle T B_{1}(x) B_{1}(0)\right\rangle\right]$, using $B_{1}=\epsilon_{a b c}\left(u_{a}^{T} C \gamma_{5} d_{b}\right) u_{c}$ for proton,
- Three-point functions,
- vector: $G_{V}^{u, d}\left(t, t^{\prime}\right)=\operatorname{Tr}\left[\left(1+\gamma_{t}\right) \sum_{\vec{x}^{\prime}} \sum_{\vec{x}}\left\langle T B_{1}\left(x^{\prime}\right) V_{t}^{u, d}(x) B_{1}(0)\right\rangle\right]$,
- axial: $G_{A}^{u, d}\left(t, t^{\prime}\right)=\frac{1}{3} \sum_{i=x, y, z} \operatorname{Tr}\left[\left(1+\gamma_{t}\right) \gamma_{i} \gamma_{5} \sum_{\vec{x}^{\prime}} \sum_{\vec{x}}\left\langle T B_{1}\left(x^{\prime}\right) A_{i}^{u, d}(x) B_{1}(0)\right\rangle\right]$.
with fixed $t^{\prime}=t_{\text {source }}-t_{\text {sink }}$ and $t<t^{\prime}$.
- From the lattice estimate

$$
g_{\Gamma}^{\text {lattice }}=\frac{G_{\Gamma}^{u}\left(t, t^{\prime}\right)-G_{\Gamma}^{d}\left(t, t^{\prime}\right)}{G_{N}(t)}
$$

with $\Gamma=V$ or A, the renormalized value

$$
g_{\Gamma}^{\text {ren }}=Z_{\Gamma} g_{\Gamma}^{\text {lattice }},
$$

is obtained.

- Non-perturbative renormalizations, defined by

$$
[\bar{u} \Gamma d]_{\mathrm{ren}}=Z_{\Gamma}[\bar{u} \Gamma d]_{0},
$$

satisfies $Z_{A}=Z_{V}$ well, so that

$$
\left(\frac{g_{A}}{g_{V}}\right)^{\text {ren }}=\left(\frac{G_{A}^{u}\left(t, t^{\prime}\right)-G_{A}^{d}\left(t, t^{\prime}\right)}{G_{V}^{u}\left(t, t^{\prime}\right)-G_{V}^{d}\left(t, t^{\prime}\right)}\right)^{\text {lattice }} .
$$

g_{A} is also described as $\Delta u-\Delta d$.

Numerical calculations with Wilson (single plaquette) gauge action:

- RIKEN-BNL-Columbia QCDSP,
- 400 gauge configurations, using a heat-bath algorithm,
- $\beta=6.0,16^{3} \times 32 \times 16, M_{5}=1.8$,
- source at $t=5$, sink at 21, current insertions in between.
$Z_{V}=1 / g_{V}^{\text {lattice }}$ is well-behaved,

- the value $0.764(2)$ at $m_{f}=0.02$ agrees well with $Z_{A}=0.7555(3)$ from
$-\left\langle A_{\mu}^{\text {conserved }}(t) \bar{q} \gamma_{5} q(0)\right\rangle=Z_{A}\left\langle A_{\mu}^{\text {local }}(t) \bar{q} \gamma_{5} q(0)\right\rangle($ RBC hep-lat/0007038, to appear in Phys. Rev. D),
- linear fit gives $Z_{V}=0.760(7)$ at $m_{f}=0$, and quadratic fit, $0.761(5)$.
$\Delta u, \Delta d$, and g_{A} / g_{V} (averaged in $\left.10 \leq t \leq 16\right):$

- linear extrapolation yields $0.81(11)$ at $m_{f}=0$, and simlarly small values for
$-\Delta q / g_{V}=0.49(12)$ and
$-\left(\delta q / g_{V}\right)^{\text {lattice }}=0.47(10)\left(\right.$ with a preliminary $\left.Z_{T} \sim 1.1\right)$.
- While relevant three-point functions are well behaved in DWF, and $Z_{V}=Z_{A}$ is well satisfied, $0.760(7)$ and $0.7555(3)$.

Why so small?

- finite lattice volume ${ }^{3}$,
- excited states (small separation between $t_{\text {source }}$ and $t_{\text {sink }}$),
- quenching (zero modes, absent pion cloud, ...).

To investigate size-dependence, we simultaneously need

- good chiral behavior, i.e. close enough to the continuum, and
- big enough volume.

Improved gauge actions help both. DBW2 ${ }^{4}$, in particular,

$$
S_{G}=\beta\left[c_{0} \sum W_{1,1}+c_{1} \sum W_{1,2}\right]
$$

with $c_{0}+8 c_{1}=1$ and $c_{1}=-1.4069$:

- very small residual chiral symmetry breaking, $a m_{\text {res }}<10^{-3}$,
- at the chiral limit, $a m_{\rho}=0.592(9)\left(\right.$ so $\left.a^{-1} \sim 1.3 \mathrm{GeV}\right), m_{\rho} / m_{N} \sim 0.8$,
- $m_{\pi}\left(m_{f}=0.02\right) \sim 0.3 a^{-1}$.

[^3]DBW2 calculations are performed at $a \sim 0.15 \mathrm{fm}(\beta=0.87)$ with both wall and sequential sources on

- $8^{3} \times 24 \times 16\left(\sim(1.2 \mathrm{fm})^{3}\right), 400$ configurations (wall) and 160 (sequential),
- $16^{3} \times 32 \times 16\left(\sim(2.4 \mathrm{fm})^{3}\right), 100$ configurations (wall and sequential),
- source-sink separation of about 1.5 fm ,
- $m_{f}=0.02,0.04, \ldots: m_{\pi} \geq 390 \mathrm{MeV}, m_{\pi} L \geq 4.8$ and 2.4.

Renormalization factors: $\mathcal{O}^{\text {ren }}(\mu)=Z_{\mathcal{O}}(a \mu) \mathcal{O}^{\text {lattice }}(a)$.

- Z_{V} shows slight quadratic dependence on m_{f} as expected: $V_{\mu}^{\text {conserved }}=Z_{V} V_{\mu}^{\text {local }}+\mathcal{O}\left(m_{f}^{2} a^{2}\right)$,
- yielding a value $Z_{V}=0.784(15)$,
- agrees well with $Z_{A}=0.77759(45){ }^{5}$.

[^4]Bare $g_{A}^{\text {lattice }}$ from wall source show volume dependence at medium $m_{f}\left((2.4 \mathrm{fm})^{3} \text { (filled) and (} 1.2 \mathrm{fm}\right)^{3}$ (open) volumes):

Bare $\Delta u^{\text {lattice }}$ and $\Delta d^{\text {lattice }}$ from sequential source $\left((2.4 \mathrm{fm})^{3}\right)$:

Bare $g_{V}^{\text {lattice }}$ from sequential source $\left((2.4 \mathrm{fm})^{3}\right)$:

$\left(g_{A} / g_{V}\right)^{\text {lattice }}$ from sequential source $\left((2.4 \mathrm{fm})^{3}\right)$:

$\left(g_{A} / g_{V}\right)^{\text {lattice }}=\left(g_{A} / g_{V}\right)^{\text {ren }}: m_{f}$ and volume dependence in bare and physical scales (m_{ρ} and Sommer):

- Clear volume dependence is seen between $(2.4 \mathrm{fm})^{3}$ and $(1.2 \mathrm{fm})^{3}$ volumes.
- The large volume results (sequential)
- show a very mild m_{f} dependence,
- extrapolate to about 8% under estimation, $g_{A}=1.15(11)$.

Alternatively we can use $g_{A}^{\text {lattice }} \times Z_{A}$:

agree well with $\left(g_{A} / g_{V}\right)^{\text {lattice }}$ in the chiral limit, and and an expected difference seen away from there.

New, this year, of axial charge: dynamical result seems to follow the quenched ${ }^{6}$.

[^5]Structure functions: measured in deep inelastic scatterings (and RHIC/Spin):

- DIS

$$
\begin{aligned}
\left|\frac{\mathcal{A}}{4 \pi}\right|^{2} & =\frac{\alpha^{2}}{Q^{4}} l^{\mu \nu} W_{\mu \nu} \\
W^{\mu \nu} & =W^{[\mu \nu]}+W^{\{\mu \nu\}}
\end{aligned}
$$

$$
\begin{aligned}
W^{\{\mu \nu\}}\left(x, Q^{2}\right) & =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(P^{\mu}-\frac{\nu}{q^{2}} q^{\mu}\right)\left(P^{\nu}-\frac{\nu}{q^{2}} q^{\nu}\right) \frac{F_{2}\left(x, Q^{2}\right)}{\nu} \\
W^{[\mu \nu]}\left(x, Q^{2}\right) & =i \epsilon^{\mu \nu \rho \sigma} q_{\rho}\left(\frac{S_{\sigma}}{\nu}\left(g_{1}\left(x, Q^{2}\right)+g_{2}\left(x, Q^{2}\right)\right)-\frac{q \cdot S P_{\sigma}}{\nu^{2}} g_{2}\left(x, Q^{2}\right)\right)
\end{aligned}
$$

with $\nu=q \cdot P, S^{2}=-M^{2}, x=Q^{2} / 2 \nu$.

- The same structure funtions appear in RHIC/Spin (which also provides $h_{1}\left(x, Q^{2}\right)$).

Moments of the structure functions are accessible on the lattice:

$$
\begin{aligned}
2 \int_{0}^{1} d x x^{n-1} F_{1}\left(x, Q^{2}\right) & =\sum_{q=u, d} c_{1, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{q}(\mu)+\mathcal{O}\left(1 / Q^{2}\right) \\
\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) & =\sum_{f=u, d} c_{2, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{q}(\mu)+\mathcal{O}\left(1 / Q^{2}\right) \\
2 \int_{0}^{1} d x x^{n} g_{1}\left(x, Q^{2}\right) & =\sum_{q=u, d} e_{1, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{\Delta q}(\mu)+\mathcal{O}\left(1 / Q^{2}\right) \\
2 \int_{0}^{1} d x x^{n} g_{2}\left(x, Q^{2}\right) & =\frac{1}{2} \frac{n}{n+1} \sum_{q=u, d}\left[e_{2, n}^{q}\left(\mu^{2} / Q^{2}, g(\mu)\right) d_{n}^{q}(\mu)-2 e_{1, n}^{q}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{\Delta q}(\mu)\right]+\mathcal{O}\left(1 / Q^{2}\right)
\end{aligned}
$$

- c_{1}, c_{2}, e_{1}, and e_{2} are the Wilson coefficients (perturbative),
- $\left\langle x^{n}\right\rangle_{q}(\mu),\left\langle x^{n}\right\rangle_{\Delta q}(\mu)$ and d_{n} are forward nucleon matrix elements of certain local operators.

Lattice operators:

- Unpolarized $\left(F_{1} / F_{2}\right)$:

$$
\begin{gathered}
\frac{1}{2} \sum_{s}\langle P, S| \mathcal{O}_{\left\{\mu_{1} \mu_{2} \cdots \mu_{n}\right\}}^{q}|P, S\rangle=2\left\langle x^{n-1}\right\rangle_{q}(\mu)\left[P_{\mu_{1}} P_{\mu_{2}} \cdots P_{\mu_{n}}+\cdots-(\text { trace })\right] \\
\mathcal{O}_{\mu_{1} \mu_{2} \cdots \mu_{n}}^{q}=\bar{q}\left[\left(\frac{i}{2}\right)^{n-1} \gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}}-(\text { trace })\right] q
\end{gathered}
$$

On the lattice we can measure: $\langle x\rangle_{q},\left\langle x^{2}\right\rangle_{q}$ and $\left\langle x^{3}\right\rangle_{q}$.

- Polarized $\left(g_{1} / g_{2}\right)$ and transversity $\left(h_{1}\right)$:

$$
\begin{aligned}
& -\langle P, S| \mathcal{O}_{\left\{\sigma \mu_{1} \mu_{2} \cdots \mu_{n}\right\}}^{5 q}|P, S\rangle=\frac{2}{n+1}\left\langle x^{n}\right\rangle_{\Delta q}(\mu)\left[S_{\sigma} P_{\mu_{1}} P_{\mu_{2}} \cdots P_{\mu_{n}}+\cdots-\text { (traces) }\right] \\
& \mathcal{O}_{\sigma \mu_{1} \mu_{2} \cdots \mu_{n}}^{5 q}=\bar{q}\left[\left(\frac{i}{2}\right)^{n} \gamma_{5} \gamma_{\sigma} \overleftrightarrow{D}_{\mu_{1}} \cdots \overleftrightarrow{D}_{\mu_{n}}-(\text { traces })\right] q \\
& \langle P, S| \mathcal{O}_{\left[\sigma\left\{\mu_{1}\right] \mu_{2} \cdots \mu_{n}\right\}}^{[5] q}|P, S\rangle=\frac{1}{n+1} d_{n}^{q}(\mu)\left[\left(S_{\sigma} P_{\mu_{1}}-S_{\mu_{1}} P_{\sigma}\right) P_{\mu_{2}} \cdots P_{\mu_{n}}+\cdots-\text { (traces) }\right] \\
& \mathcal{O}_{\left[\sigma \mu_{1}\right] \mu_{2} \cdots \mu_{n}}^{[5]}=\bar{q}\left[\left(\frac{i}{2}\right)^{n} \gamma_{5} \gamma_{[\sigma} \overleftrightarrow{D}_{\left.\mu_{1}\right]} \cdots \overleftrightarrow{D}_{\mu_{n}}-(\text { traces })\right] q \\
& \left.\left.\langle P, S| \mathcal{O}_{\rho \nu\left\{\mu_{1} \mu_{2} \cdots \mu_{n}\right\}}^{\sigma q}\right\} P, S\right\rangle=\frac{2}{m_{N}}\left\langle x^{n}\right\rangle_{\delta q}\left[\left(S_{\rho} P_{\nu}-S_{\nu} P_{\rho}\right) P_{\mu_{1}} P_{\mu_{2}} \cdots P_{\mu_{n}}+\cdots-(\text { traces })\right] \\
& \mathcal{O}_{\rho \nu \mu_{1} \mu_{2} \cdots \mu_{n}}^{\sigma q}=\bar{q}\left[\left(\frac{i}{2}\right)^{n} \gamma_{5} \sigma_{\rho \nu} \overleftrightarrow{D}_{\mu_{1}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}}-(\text { traces })\right] q
\end{aligned}
$$

On the lattice we can measure: $\langle 1\rangle_{\Delta q}\left(g_{A}\right),\langle x\rangle_{\Delta q},\left\langle x^{2}\right\rangle_{\Delta q}, d_{1}, d_{2},\langle 1\rangle_{\delta q}$ and $\langle x\rangle_{\delta q}$.

- Higher moment operators mix with lower dimensional ones.
- Only $\langle x\rangle_{q},\langle 1\rangle_{\Delta q},\langle x\rangle_{\Delta q}, d_{1}$, and $\langle 1\rangle_{\delta q}$ can be measured with $\vec{P}=0$.

Renormalization: $\mathcal{O}^{\text {ren }}=Z_{\mathcal{O}}(a \mu) \mathcal{O}^{\text {lat }}(a)$,

- lattice complications: operator mixing from broken Lorentz or chiral symmetry,
- NPR is required when mixing with lower dimensional operator occurs.

We calculate $Z_{\mathcal{O}}(a \mu)$ non-perturbatively in RI/MOM scheme ${ }^{7}$ with perturbative matching to $\overline{\mathrm{MS}}$.

- compute off-shell matrix element of the operator, \mathcal{O}, in Landau gauge,
- impose a MOM scheme condition $\left.\operatorname{Tr} V_{\mathcal{O}}\left(p^{2}\right) \Gamma\right|_{p^{2}=\mu^{2}} \frac{Z_{\mathcal{O}}}{Z_{q}}=1$,
$-V_{\mathcal{O}}\left(p^{2}\right)$ is the relevant amputated vertex,
$-\Gamma$ is an appropriate projector,
- extrapolate to the chiral limit, defining the RI scheme,
- in an appropriate window, $\Lambda_{\mathrm{QCD}} \ll \mu^{2} \ll a^{-1}$, a scale invariant

$$
Z_{\mathrm{rgi}}=\frac{Z\left(\mu^{2}\right)}{C\left(\mu^{2}\right)}
$$

is obtained, with the operator running $C\left(\mu^{2}\right)$ in the continuum perturbation theory.

- Now we can perturbatively match to e.g. $\overline{\mathrm{MS}}$.

Works nicely with DWF.

[^6]Quark density $\langle x\rangle_{u-d}$, calculated with $\mathcal{O}_{44}^{q}=\bar{q}\left[\gamma_{4} \stackrel{\leftrightarrow}{D}_{4}-\frac{1}{3} \sum_{k=1}^{3} \gamma_{k} \stackrel{\leftrightarrow}{D}_{k}\right] q$.

- Quenched calculation complete with NPR,

$-Z=1.02(10)$, with $\overline{\mathrm{MS}} 2 \mathrm{GeV}$, 2-loop running,
- no curvature seen in the chiral limit,
$-\langle x\rangle_{u} /\langle x\rangle_{d}=2.41(4)$ at the chiral limit.
- Dynamical calculation ongoing, lacks NPR,

Polarization, $\langle x\rangle_{\Delta u-\Delta d}$, calculated with $\mathcal{O}_{34}^{5 q}=\frac{1}{4} \bar{q} \gamma_{5}\left[\gamma_{3} \overleftrightarrow{D}_{4}+\gamma_{4} \overleftrightarrow{D}_{3}\right] q$.

- Quenched calculation complete with NPR,

$-Z=1.02(9)$, with $\overline{\mathrm{MS}} 2 \mathrm{GeV}$, 2-loop running,
- no curvature seen in the chiral limit.
- Dynamical calculation ongoing.

Transversity, $\langle 1\rangle_{\delta u-\delta d}$, calculated with $\mathcal{O}_{34}^{\sigma q}=\bar{q} \gamma_{5} \sigma_{34} q$.

- Quenched calculation complete with NPR,

$-\langle 1\rangle_{\delta u-\delta d}=1.193(30), \overline{\mathrm{MS}}(2 \mathrm{GeV})$ 2-loop running,
- QCDSF (quenched continuum): $\langle 1\rangle_{\delta u-\delta d}=1.214(40), \overline{\mathrm{MS}}(1 \mathrm{GeV})$ 1-loop perturbative.
- Dynamical calculation ongoing, lacks NPR,

d_{1} : twist-3 part of $g_{2}\left(\langle x\rangle_{\Delta q}\right.$ is twist-2),

$$
2 \int_{0}^{1} d x x^{n} g_{2}\left(x, Q^{2}\right)=\frac{1}{2} \frac{n}{n+1} \sum_{q=u, d}\left[e_{2, n}^{q}\left(\mu^{2} / Q^{2}, g(\mu)\right) d_{n}^{q}(\mu)-2 e_{1, n}^{q}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{\Delta q}(\mu)\right]
$$

calculated with $\mathcal{O}_{\left[\sigma \mu_{1}\right] \mu_{2} \cdots \mu_{n}}^{[5]]}=\bar{q}\left[\left(\frac{i}{2}\right)^{n} \gamma_{5} \gamma_{[\sigma} \stackrel{\leftrightarrow}{D}_{\left.\mu_{1}\right]} \cdots \overleftrightarrow{D}_{\mu_{n}}\right.$-traces $] q$.

- negligible in Wandzura-Wilczek relation, $g_{2}(x)=-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)$,
- but need not be small in a confining theory (Jaffe and Ji, Phys. Rev. D43, 91),

- small in the chiral limit (no power divergent mixing),
- disagree with Wilson fermion results (which suffer from power divergent mixing)?

- small in the chiral limit.

Nucleon decay (Yasumichi Aoki): proton decay with dimension 6 operators such as

$$
\left\langle\pi^{0} e^{+}\right| q q q l|p\rangle
$$

or more precisely the hadronic matrix elements in general take the form of

$$
\left\langle\pi^{0}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} d^{j}\right) P_{L} u^{k}|p\rangle
$$

(SUSY) GUT processes: classification by $S U(3) \times S U(2) \times U(1)$ leads to a complete set of operators. Relevant for p / n decay are,

$$
\begin{array}{ll}
\left\langle\pi^{0}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} d^{j}\right) P_{L} u^{k}|p\rangle, & \left\langle\pi^{+}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} d^{j}\right) P_{L} d^{k}|p\rangle, \\
\left\langle K^{0}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} s^{j}\right) P_{L} u^{k}|p\rangle, & \left\langle K^{+}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} s^{j}\right) P_{L} d^{k}|p\rangle, \\
\left\langle K^{+}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} d^{j}\right) P_{L} s^{k}|p\rangle, & \left\langle K^{0}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} s^{j}\right) P_{L} d^{k}|n\rangle, \\
\langle\eta| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} d^{j}\right) P_{L} u^{k}|p\rangle, &
\end{array}
$$

and those obtained through the exchange of u and d.

Lattice methods:

- indirect: chiral perturbation (tree level) + low-energy constant (lattice), ie

$$
\mathcal{L}_{\chi}\left(\text { mesons and baryons: } D, F, f_{\text {meson }}, m_{\text {baryon }}\right)+(\text { baryon decay interaction: } \alpha, \beta)
$$

- direct: calculate all the relevant 2- and 4-point functions on the lattice.

Issues:

- direct method is about 10 times more expensive,
- indirect and direct results disagree (Gavela et al (1989)),
- \mid indirect $|=|$ direct $\mid+\sim 50 \%(J L Q C D(2000))$.

Direct method:

$$
\left\langle\pi^{0}\right| i \epsilon_{i j k}\left(u^{i T} C P_{L / R} d^{j}\right) P_{L} u^{k}|p\rangle=P_{L}\left[W_{0}\left(q^{2}\right)-W_{q}\left(q^{2}\right) i(\gamma q)\right] u_{p}
$$

where q is the momentum transfer of $p \rightarrow \pi^{0}$.

- as $i(\gamma q) v_{e} \sim m_{e} v_{e}$ is negligible, we need to extract W_{0},
- yet the mixing of W_{q} is inevitable because we also need to project to positive parity proton,

$$
\operatorname{tr}\left(P_{L}\left[W_{0}-W_{q} i(\gamma q)\right] \frac{1+\gamma_{4}}{2}\right)=W_{0}-i q_{4} W_{q}
$$

- we go around this by injecting finite momentum (JLQCD, PRD 62, 014506 (2000)),

$$
\operatorname{tr}\left(P_{L}\left[W_{0}-W_{q} i(\gamma q)\right] \frac{1+\gamma_{4}}{2} i \gamma_{j}\right)=q_{j} W_{q}
$$

Slightly different sequential propagators are used.

Remaining problems:

- chiral symmetry,
- previous studies used Wilson fermions which explicitly break chiral symmetry,

$$
O_{R L}^{\text {cont }}=Z O_{R L}^{\text {latt }}+Z_{\text {mix }} O_{L L}^{\text {latt }}+Z_{\text {mix }}^{\prime} O_{\gamma \mu L}^{\text {latt }}
$$

- so the results need not match the chiral perturbation,
- with DWF better chiral symmetry, the indirect method may work.
- $\mathcal{O}(a)$ scaling violation,
- quenched approximation.

DWF:

- good chiral symmetry, $O_{R L}^{\text {cont }}=Z O_{R L}^{\text {latt }}$,
- should match the chiral perturbation at finite a,
- if the low-energy coefficients are calculated on the lattice,
- note f_{π} and $g_{A}(=D+F)$ are consistent with experiment within a few $\%$ even at finite a,
- scaling violation starts at $\mathcal{O}\left(a^{2}\right)$,

Renormalization: NPR works well, one-loop matching from MOM to $\overline{\mathrm{MS}}(\mathrm{NDR}$), two-loop running to 2 GeV .

Quenched results: the direct and indirect methods disagree with each other. We have to

- follow through the direct method, or
- work out higher order chiral pertubation.

Quenching error: estimated in the indirect method, appear small from $\frac{1}{2} m_{s} \leq m_{\text {sea }} \leq m_{s}$.

The dynamical result shows stronger dependence on m_{π}, but the extrapolation to the chiral limit is consistent with that of the quenched within $\sim 20 \%$ error.

Summary of the low energy parameter of nucleon decay at the renormalization scale $\mu=2 \mathrm{GeV}$. Quoted errors for DWF are statistical only. $\alpha+\beta=0$ within the error.

Fermion	Wilson a	DWF	
N_{f}	0	0	2
$a[\mathrm{fm}]$	0	0.15	0.12
$\|\alpha\|\left[\mathrm{GeV}^{3}\right]$	$0.0090(09)\left({ }_{-19}^{+5}\right)$	$0.010(1)$	$0.012(2)$
$\|\beta\|\left[\mathrm{GeV}^{3}\right]$	$0.0096(09)\left({ }_{-20}^{+6}\right)$	$0.011(1)$	$0.012(2)$

[^7]Need to explore much lighter quark mass with dynamical flavors. The direct method is favored.

New, this year, are

- axial charge
- dynamical result seems to follow the quenched,
- quark density $\langle x\rangle_{u-d}$,
- quenched calculation complete with NPR (no curvature seen in the chiral limit),
- dynamical calculation ongoing, lacks NPR,
- polarization $\langle x\rangle_{\Delta u-\Delta d}$,
- quenched calculation complete with NPR (no curvature seen in the chiral limit),
- dynamical calculation ongoing, lacks NPR,
- transversity, $\langle x\rangle_{\delta u-\delta d}$,
- quenched calculation complete with NPR,
- dynamical calculation ongoing, lacks NPR,
- d_{1} : twist-3 part of $g_{2}\left(\langle x\rangle_{\Delta q}\right.$ is twist-2),
- negligible in Wandzura-Wilczek relation of g_{1} and g_{2},
- but need not be small in a confining theory (Jaffe and Ji, Phys. Rev. D43, 91),
- small in the chiral limit in both quenched and dynamical (unrenormalized),
- disagree with quenched Wilson fermion results (which suffer from power divergent mixing)?
- Nucleon decay:
- quenched calculation complete with NPR, in favor of the direct method,
- dynamical calculation well under way.

Conclusions

- Quenched calculations are almost complete with NPR.
- $N_{f}=2$ dynamical calculations are well under way.
- Axial charge: dynamical result seems to follow the quenched,
- seem to agree well with the experiment,
- no curvature seen down to 390 MeV pion mass.
- Moments of structure functions: quenched results almost complete with NPR,
- no curvature seen in $\langle x\rangle_{u-d},\langle x\rangle_{\Delta u-\Delta d}$ and $\langle 1\rangle_{\delta u-\delta d}$ down to 390 MeV pion mass, dynamical calculations are ongoing,
- d_{1} in the chiral limit seems small in both quenched and dynamical.
- Nucleon decay: quenched calculation almost complete with NPR,
- favors the direct method,
dynamical calculation well under way.

Immediate futre

- Publish quenched results for structure functions and nucleon decay.
- Finish ongoing dynamical calculations (QCDSP/QCDOC).
- Explore lighter quark mass and (2+1)-flavor dynamical (QCDOC).
- Turn on observables with finite momentum: some form factors, e.g. F_{1}, F_{2}, g_{P} and electric dipole and higher moments of the structure functions.

[^0]: *Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

[^1]: ${ }^{1}$ QCD-TARO collaboration, Nucl. Phys. B577, 263 (2000). See also RBC collaboration, Phys. Rev. D69, 074504 (2004); hep-lat/0211023.

[^2]: ${ }^{2}$ The Particle Data Group.

[^3]: ${ }^{3}$ R.L. Jaffe, Phys .Lett. B529:105, 2002; hep-ph/0108015. See also T.D. Cohen, Phys. Lett. B529:50, 2002; hep-lat/0112014.
 ${ }^{4}$ QCD-TARO collaboration, Nucl. Phys. B577, 263 (2000); RBC collaboration, in preparation.

[^4]: ${ }^{5} \mathrm{RBC}$ Collaboration, in preparation: this value is obtained from a relation $\left\langle A_{\mu}^{\text {conserved }}(t)\left[\bar{q} \gamma_{5} q\right](0)\right\rangle=Z_{A}\left\langle A_{\mu}^{\text {local }}(t)\left[\bar{q} \gamma_{5} q\right](0)\right\rangle$

[^5]: ${ }^{6}$ Note the lattice scales obtained from m_{ρ} and Sommer scale agree, with $a^{-1} \sim 1.7 \mathrm{GeV}$.

[^6]: ${ }^{7}$ Martinelli et. al, Nucl. Phys. B455, 81 (1995).

[^7]: ${ }^{a}$ Tsutsui et al., [CP-PACS Collaboration], arXiv:hep-lat/0402026.

