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Need for Lattice Perturbation Theory

• Monte Carlo simulation times scale as 1
a6

• Use improved actions to reduce cutoff effects

• Conversion between αV and α
MS

• Matching LEFT operators to QCD one

OCont = ZO

[

Olatt
0 +

∑

n

cnOn

]

• Short distance coefficients, can match perturbativly if αV (π/a)

is not too large.

• Important for determining decay constants, form factors, etc.
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The Fermilab Action

• The Fermilab action smoothly interpolates between light and

heavy quark actions

• Very useful for c quark physics
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The Fermilab Action

• The Fermilab action smoothly interpolates between light and

heavy quark actions

• Very useful for c quark physics

S = a4
∑

x

ψ̄(x)

{

m0 +
1

2

[

(1 + γ0)D
−

0 − (1 − γ0)D
+
0

]

+ ζ~γ · ~D −
arsζ

2
4(3) −

iacBζ

2
~Σ · ~B −

acEζ

2
~α · ~E

}

ψ(x)
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The Fermilab Action

• The Fermilab action smoothly interpolates between light and

heavy quark actions

• Very useful for c quark physics

S = a4
∑

x

ψ̄(x)

{

m0 +
1

2

[

(1 + γ0)D
−

0 − (1 − γ0)D
+
0

]

+ ζ~γ · ~D −
arsζ

2
4(3) −

iacBζ

2
~Σ · ~B −

acEζ

2
~α · ~E

}

ψ(x)

• At tree level ζ = rs = cB = 1, and cE =
1+

m0(2+m0)

4(1+m0)

1+m0
≈ 1
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Lattice Perturbation Theory Techniques

• The lattice cutoff means that Feynman rules are much more

complicated

• Non-linear connection Uµ(x) = eigaAµ(x) produces an infinite

tower of extra vertices

• Use of highly improved gauge and quark actions adds

additional operators
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Lattice Perturbation Theory Techniques

• The lattice cutoff means that Feynman rules are much more

complicated

• Non-linear connection Uµ(x) = eigaAµ(x) produces an infinite

tower of extra vertices

• Use of highly improved gauge and quark actions adds

additional operators

• Automated perturbation theory addresses these issues

• Generate vertex functions (and diagrams) automatically

• Perform loop integrals using VEGAS
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Current Matching

• Vector and Axial-Vector currents are of great interest

• Calculation of semileptonic decays requires 〈P |V µ|D〉
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Current Matching

• Vector and Axial-Vector currents are of great interest

• Calculation of semileptonic decays requires 〈P |V µ|D〉

O = ψ̄γµ(γ5)ψ

ψ̄cΓµψc = ZΓψ̄lΓµψl + O(a)
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Current Matching

• Vector and Axial-Vector currents are of great interest

• Calculation of semileptonic decays requires 〈P |V µ|D〉

O = ψ̄γµ(γ5)ψ

ψ̄cΓµψc = ZΓψ̄lΓµψl + O(a)

• Correct O(a) errors by using rotated spinors

Ψ(x) =
[

1 + ad1~γ · ~D
]

ψ(x), d1 =
m0

2(1 +m0)(2 +m0)
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Current Matching

• Vector and Axial-Vector currents are of great interest

• Calculation of semileptonic decays requires 〈P |V µ|D〉

O = ψ̄γµ(γ5)ψ

ψ̄cΓµψc = ZΓψ̄lΓµψl + O(a)

• Correct O(a) errors by using rotated spinors

Ψ(x) =
[

1 + ad1~γ · ~D
]

ψ(x), d1 =
m0

2(1 +m0)(2 +m0)

• Matching condition: ψ̄cΓµψc − ZΓΨ̄lΓΨl = 0 + O(a2)
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Current Matching (cont.)

• One loop corrections can be large

• On the MILC coarse lattices αV ≈ 0.3

• Two loop corrections could be important as well
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Current Matching (cont.)

• One loop corrections can be large

• On the MILC coarse lattices αV ≈ 0.3

• Two loop corrections could be important as well

Zh`
Γ =

√

Zhh
V4
Z``

V4
ρh`
Γ
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Current Matching (cont.)

• One loop corrections can be large

• On the MILC coarse lattices αV ≈ 0.3

• Two loop corrections could be important as well

Zh`
Γ =

√

Zhh
V4
Z``

V4
ρh`
Γ

• Zqq
V4

can be determined non-perturbativly

• Expect that the perturbative corrections to ρ will be small, for

mh
0a not too large

• Verified (to one loop) by Harada et.al. for Wilson glue and

clover light quarks

• Improved glue? Asqtad light quarks?
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Current Matching (cont.)

• ρ factors are expected to be close to one

• Expand each component to one loop
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Current Matching (cont.)

• ρ factors are expected to be close to one

• Expand each component to one loop

ρ
(1)h`

Γ = Z
(1)h`

Γ −
1

2

(

Z
(1)hh

V4
+ Z

(1)``
V4

)

• Is ρ(1) ≈ 0 over the mass range of interest?
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Current Matching (cont.)

• ρ factors are expected to be close to one

• Expand each component to one loop

ρ
(1)h`

Γ = Z
(1)h`

Γ −
1

2

(

Z
(1)hh

V4
+ Z

(1)``
V4

)

• Is ρ(1) ≈ 0 over the mass range of interest?

• Fermilab approach means ZΓ4 6= ZΓi

• To compute ρ for a given mass pair we need to evaluate six Z

factors (Γ = γ4, Γ = γi, Γ = γ5γ4 and Γ = γ5γi)
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Computing Z(1)

〈q|Oc|Q〉 − ZO〈q|Olatt|Q〉 = 0

• Expand each term to one loop order
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Computing Z(1)

〈q|Oc|Q〉 − ZO〈q|Olatt|Q〉 = 0

• Expand each term to one loop order

Z
(0)
O

=
〈q|Oc|Q〉(0)

〈q|Olatt|Q〉(0)
Z

(1)
O

=
〈q|Oc|Q〉(1) − Z

(0)
O

〈q|Olatt|Q〉(1)

〈q|Olatt|Q〉(0)
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Computing Z(1)

〈q|Oc|Q〉 − ZO〈q|Olatt|Q〉 = 0

• Expand each term to one loop order

Z
(0)
O

=
〈q|Oc|Q〉(0)

〈q|Olatt|Q〉(0)
Z

(1)
O

=
〈q|Oc|Q〉(1) − Z

(0)
O

〈q|Olatt|Q〉(1)

〈q|Olatt|Q〉(0)

• Wilson-like fermions have a non-trivial wavefunction

renormalization at tree-level

Z
(0)
O

=
√

(1 +mq)(1 +mQ)
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Computing Z(1) (cont)

• Account for dominant mass dependence by computing

Z = Z/Z(0)

Z
(1)
O

=
〈q|Oc|Q〉(1)

〈q|Oc|Q〉(0)
−

〈q|Olatt|Q〉(1)

〈q|Olatt|Q〉(0)
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Computing Z(1) (cont)

• Account for dominant mass dependence by computing

Z = Z/Z(0)

Z
(1)
O

=
〈q|Oc|Q〉(1)

〈q|Oc|Q〉(0)
−

〈q|Olatt|Q〉(1)

〈q|Olatt|Q〉(0)

• Important to use the same infrared regulator for both lattice

and continuum theories

• Results presented here use a gluon mass

• Could also use twisted periodic boundary conditions

• Lattice to lattice matching is possible for these currents
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Calculation Details (continuum)

• Continuum calculation uses a gluon mass IR regulator

• Pauli-Villars regulator Λ for the UV

• Continuum result does not depend on Λ

• Three diagrams

〈q|Oc|Q〉(1) =
1

2

∂

∂p0 p p
×

p p̄
+

1

2

∂

∂p0 p̄ p̄
×

p p̄

+
p p̄
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Calculation Details (lattice)

• Lattice calculation uses a gluon mass IR regulator

• Five diagrams without the rotations

• For clover light, and Fermilab heavy, the rotations add 12

further diagrams

• For Asqtad light the rotations add 3 diagrams
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Calculation Details (lattice)

• Lattice calculation uses a gluon mass IR regulator

• Five diagrams without the rotations

• For clover light, and Fermilab heavy, the rotations add 12

further diagrams

• For Asqtad light the rotations add 3 diagrams

• evaluate diagrams by brute force VEGAS integration
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Checks

• Important checks are
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1. Agreement with Harada, et.al. for Wilson glue and clover light

quarks
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Checks

• Important checks are

1. Agreement with Harada, et.al. for Wilson glue and clover light

quarks

2. Correct heavy quark limit for any combination of actions

ZΓ =
zΓ + 3 log(1 +m0)

12π2
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Checks

• Important checks are

1. Agreement with Harada, et.al. for Wilson glue and clover light

quarks

2. Correct heavy quark limit for any combination of actions

ZΓ =
zΓ + 3 log(1 +m0)

12π2

3. Agreement between two independent calculations for the self

energy Z2 with improved glue and asqtad quarks
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Checks

• Important checks are

1. Agreement with Harada, et.al. for Wilson glue and clover light

quarks

2. Correct heavy quark limit for any combination of actions

ZΓ =
zΓ + 3 log(1 +m0)

12π2

3. Agreement between two independent calculations for the self

energy Z2 with improved glue and asqtad quarks

• All these checks are satisfied
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Zh`
V4

with Improved glue
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Zh`
Ai

with Improved glue
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ρ factors for light clover quarks and improved
glue
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ρ factors for light Asqtad quarks and improved
glue
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q∗ for ZV4
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Impact on decay constant calculations

• Over the mass range of interest |ρ1| ≈ 0.03αV

• Take αV ≈ 0.3
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Impact on decay constant calculations

• Over the mass range of interest |ρ1| ≈ 0.03αV

• Take αV ≈ 0.3

ρV⊥
= 0.99 + O(α2

V )

ρV‖
= 1.01 + O(α2

V )
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Impact on decay constant calculations

• Over the mass range of interest |ρ1| ≈ 0.03αV

• Take αV ≈ 0.3

ρV⊥
= 0.99 + O(α2

V )

ρV‖
= 1.01 + O(α2

V )

Use of ρ factors greatly reduces perturbative
errors due to current matching
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Conclusions and Outlook

• Automated perturbation theory works well on current

matching calculations

• ρ factors were expected to have small perturbative corrections

• The one loop calculations presented here confirm this

• Smallness of one loop terms means that two loop PT is not

needed
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Conclusions and Outlook

• Automated perturbation theory works well on current

matching calculations

• ρ factors were expected to have small perturbative corrections

• The one loop calculations presented here confirm this

• Smallness of one loop terms means that two loop PT is not

needed

• Does a similar factorization work for NRQCD?

• Dominant error is now matching of parameters in the action

• These calculations are nearing completion (Fermilab and

NRQCD)
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