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Outline

e The need for lattice perturbation theory
e The Fermilab action
e Techniques for lattice PT

e Current matching calculations
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Need for Lattice Perturbation Theory

e Monte Carlo simulation times scale as a%-

e Use improved actions to reduce cutoff effects
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Need for Lattice Perturbation Theory

Monte Carlo simulation times scale as a%-

Use improved actions to reduce cutoff effects

Conversion between ay and o=

Matching LEFT operators to QCD one

OCOnt — 7

O(l)att + Z CnOn

Short distance coefficients, can match perturbativly if ay (7/a)
is not too large.

Important for determining decay constants, form factors, etc.
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The Fermilab Action

e The Fermilab action smoothly interpolates between light and

heavy quark actions

e Very usetul for ¢ quark physics
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The Fermilab Action

e The Fermilab action smoothly interpolates between light and

heavy quark actions

e Very usetul for ¢ quark physics

4Z¢ {m0+;[(1+%)DO‘—(1—7@)DJ}

TN PR YNNI O SO E} ¥ (x)

2 2 2

mqg(24+mq)
1+ 4(21+m0? ~ 1
14+myg

o At treelevel ( =r; =cp =1, and cg =
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Lattice Perturbation Theory Techniques

e The lattice cutoff means that Feynman rules are much more

complicated

e Non-linear connection U, (x) = €/9%41(*) produces an infinite

tower of extra vertices

e Use of highly improved gauge and quark actions adds

additional operators
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Lattice Perturbation Theory Techniques

The lattice cutoff means that Feynman rules are much more

complicated

Non-linear connection U, (z) = €?924x(®) produces an infinite

tower of extra vertices

Use of highly improved gauge and quark actions adds

additional operators

Automated perturbation theory addresses these issues
Generate vertex functions (and diagrams) automatically

Perform loop integrals using VEGAS
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Current Matching
e Vector and Axial-Vector currents are of great interest

e Calculation of semileptonic decays requires (P|V#|D)
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Current Matching
e Vector and Axial-Vector currents are of great interest

e Calculation of semileptonic decays requires (P|V#|D)

O = @Z%L('YB)lﬂ
7Lcr/ﬂvbc — ZF@ZZF/JJ@DZ + O(CL)
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Current Matching
e Vector and Axial-Vector currents are of great interest

e Calculation of semileptonic decays requires (P|V#|D)

O = @7#('75%?
7Lcr/ﬂvbc — ZF@ZZF/JJ@DZ + O(CL)

e Correct O(a) errors by using rotated spinors

mo

U(x) = {1 + ady7 - 5} P(x), di= 2(1 4+ mg)(2 + myg)
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Current Matching
e Vector and Axial-Vector currents are of great interest

e Calculation of semileptonic decays requires (P|V#|D)

O = @7#('75%?
7Lcr/ﬂvbc — ZF@ZZF/JJ@DZ + O(CL)

e Correct O(a) errors by using rotated spinors

mo

U(x) = {1 + ady7 - 5} P(x), di= 2(1 4+ mg)(2 + myg)

e Matching condition: @ZCFM@DC — ZrU I, = 0+ O(a?)

Sept. 23. 2004
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Current Matching (cont.)
e One loop corrections can be large
e On the MILC coarse lattices oy =~ 0.3

e Two loop corrections could be important as well
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e One loop corrections can be large
e On the MILC coarse lattices oy =~ 0.3

e Two loop corrections could be important as well

Ny
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Current Matching (cont.)
e One loop corrections can be large
e On the MILC coarse lattices oy =~ 0.3

e Two loop corrections could be important as well

Ny

e 7! can be determined non-perturbativly

e Expect that the perturbative corrections to p will be small, for

mla not too large

e Verified (to one loop) by Harada et.al. for Wilson glue and
clover light quarks

e Improved glue? Asqtad light quarks?

Sept. 23. 2004
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Current Matching (cont.)
e p factors are expected to be close to one

e Expand each component to one loop
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Current Matching (cont.)
e p factors are expected to be close to one

e Expand each component to one loop

p(;)hﬁ _ Zl(})he B (Z‘(/i)hh n Z%)M)

DO |

e Is p\1) ~ 0 over the mass range of interest?

Sept. 23. 2004
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Current Matching (cont.)
p factors are expected to be close to one

Expand each component to one loop

(1)he _ Zl(})he B

P (Z‘(/i)hh n Z%)M)

DO |

Is pM) ~ 0 over the mass range of interest?

Fermilab approach means Zr, # Zr,

To compute p for a given mass pair we need to evaluate six Z
factors (I' = v, I' = 73, ' = y572 and T' = y5;)
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Computing Z
<Q|OC‘Q> - Z(’)<Q‘Olatt|Q> =0

e Expand each term to one loop order
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Computing Z !
<Q|OC‘Q> - Z(’)<Q‘Olatt|Q> =0

e Expand each term to one loop order

(910.1Q) ) (@0JQYD = 25 (g|O1ase |Q)YD)

Z9 — 70 —

(q]O1att]| Q) () (q|Orats| Q) (©
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Computing Z
<Q|OC‘Q> - Z(’)<Q‘Olatt|Q> =0

e Expand each term to one loop order

(910.1Q) ) (@0JQYD = 25 (g|O1ase |Q)YD)

70 _ 70 —

<C]’Olatt\Q>(O) <Q|Olatt‘Q>(O)

e Wilson-like fermions have a non-trivial wavefunction

renormalization at tree-level

28 = /(1 +mg)(1 + mg)
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Computing ZM (cont)

e Account for dominant mass dependence by computing
zZ=27/70

(1) <Q|Oc’Q>(1) <Q|Olatt’Q>(1)

z\) _
O {gO]Q)O  (q]Orae |Q)©
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Computing ZM (cont)

Account for dominant mass dependence by computing
zZ=27/70

(210 Q)W (g Ot | Q)Y
(q|O0|Q)® (| Orars| Q)(©)

z5) =

Important to use the same infrared regulator for both lattice

and continuum theories
Results presented here use a gluon mass
Could also use twisted periodic boundary conditions

Lattice to lattice matching is possible for these currents
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Calculation Details (continuum)
e Continuum calculation uses a gluon mass IR regulator
e Pauli-Villars regulator A for the UV
e Continuum result does not depend on A

e Three diagrams

1
godw = 1l e 1% A
20p0p p p p 200p p D P

L

p p

Sept. 23. 2004
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Calculation Details (lattice)

e Lattice calculation uses a gluon mass IR regulator
e Five diagrams without the rotations

e For clover light, and Fermilab heavy, the rotations add 12

further diagrams

e For Asqtad light the rotations add 3 diagrams

AN N
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Calculation Details (lattice)

Lattice calculation uses a gluon mass IR regulator
Five diagrams without the rotations

For clover light, and Fermilab heavy, the rotations add 12

further diagrams

For Asqtad light the rotations add 3 diagrams

AN N

evaluate diagrams by brute force VEGAS integration
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Checks

e Important checks are
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Checks

e Important checks are

1. Agreement with Harada, et.al. for Wilson glue and clover light

quarks
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Checks

e Important checks are

1. Agreement with Harada, et.al. for Wilson glue and clover light
quarks

2. Correct heavy quark limit for any combination of actions

zr + 3log(1 4+ myg)

Z =
g 1272
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Checks

e Important checks are

1. Agreement with Harada, et.al. for Wilson glue and clover light
quarks

2. Correct heavy quark limit for any combination of actions

zr + 3log(1 4+ myg)
1272

3. Agreement between two independent calculations for the self

Zr =

energy Zo with improved glue and asqtad quarks

Sept. 23. 2004
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Checks

e Important checks are

1. Agreement with Harada, et.al. for Wilson glue and clover light
quarks

2. Correct heavy quark limit for any combination of actions

zr + 3log(1 4+ myg)
1272

3. Agreement between two independent calculations for the self

Zr =

energy Zo with improved glue and asqtad quarks

e All these checks are satisfied

Sept. 23. 2004
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Z{}f with Improved glue

0.08 - Shog(14mo)—8.71(1) '

1272
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Zﬁf with Improved glue

0.08 31<')g(1+7711207)r;—10.64(4) |

0.06 -

0.04 B

0.02 - ee@e' |
21(41) 0 r N %

Sept. 23. 2004




CORNELL ;";
UNIVERSITY %)
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

p tactors for light clover quarks and improved

olue
0.1 | | | |
- . % PV, ——
0.05 - ?i%%%@i%ﬂwI—
o o PA; —E—
0 - PA, =« X -5 ]
" -0.05 —
0
-0.1 % § —
-015 B % % § % —
0.2 ¢ ¢ ¢ -
_025 I I I I
0 0.2 0.4 0.6 0.8 1
My = log(1 + mo)
moy¢ = 0.01
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p factors for light Asqtad quarks and improved

olue
0.1 |
PVy —<—

0138 — pyg .- +_.;'_
0.06 _
" 0.04 3 % o 3 —
pPrlav .02 3 B -
0 F + _

+ !
002 T -
-0.04 _

| | | |

0 0.01 0.02 0.03 0.04 0.05
M = log(1 + mo)
mo,c — 0.575
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q* for Zy,

2.95 |-
2.9 -
2.89 |-
2.8
2.75 -
2.7 -

2.65

moy¢ = 0.001

1.2
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Impact on decay constant calculations
e Over the mass range of interest |p!| ~ 0.03cy

e Take ay ~ 0.3
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Impact on decay constant calculations
e Over the mass range of interest |p!| ~ 0.03cy

e Take ay ~ 0.3

pv, = 0.99 + O(a3)
pv, = 101+ O(a7)
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Impact on decay constant calculations
e Over the mass range of interest |p!| ~ 0.03cy

e Take ay ~ 0.3

pv, = 0.99 + O(a3)
pv, = 1.01 + O(ay)

Use of p factors greatly reduces perturbative
errors due to current matching

Sept. 23, 2004
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Conclusions and Outlook

e Automated perturbation theory works well on current

matching calculations
e p factors were expected to have small perturbative corrections
e The one loop calculations presented here confirm this

e Smallness of one loop terms means that two loop PT is not
needed
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Conclusions and Outlook

Automated perturbation theory works well on current
matching calculations

p factors were expected to have small perturbative corrections
The one loop calculations presented here confirm this

Smallness of one loop terms means that two loop PT is not

needed

Does a similar factorization work for NRQCD?
Dominant error is now matching of parameters in the action

These calculations are nearing completion (Fermilab and

NRQCD)

Sept.
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