B_K from Quenched and Dynamical Domain-wall QCD

Jun Noaki

for **RIKEN BNL** Columbia Collaboration

Introduction

• RBC's longstanding project for kaon physics (2002–)

Domain-wall fermion + DBW2 gauge action

– Quenched calc.
$$:a^{-1}pprox$$
 2 GeV, 3 GeV

scaling behavior ?

– Dynamical calc. : $N_f=2,\;a^{-1}pprox$ 1.7 GeV, three $m_{
m sea}$ quenching effect ?

T. Izubuchi's talk

• In this talk –

- Detail of our numerical simulation (mainly quenched)
- Quenched results stage 1: f_{π} , f_{K} , NPR, B_{K}
- Dynamical results
- Conclusion

Simulation Parameters

QUENCHED

Two lattice scales are examined

 $N_f = 2$ DYNAMICAL

 $m_{
m sea} = 0.02, 0.03, 0.04$

	eta=1.22	eta=1.04	eta=0.80
	2		
size	$24^3 imes 48$	$16^3 imes 32$	$16^3 imes 32$
L_s	10	16	12
M_5	1.65	1.70	1.80
wall-source	$t=7,\;41$	$t=5,\ 27$	$t=4,\ 28$
	100	202	
statistics for ME	106	202	94
NPR	53	50	40
m_{f}	0.008 imes1,2,3,4,5	0.01 imes (1), 2, 3, 4, 5	0.01 imes1,2,3,4,5
$m_s/2$	0.01595(78)	0.02246(38)	$\simeq 0.021$
$m_{ m res}$	$0.9722(27) \cdot 10^{-4}$	$1.86(12) \cdot 10^{-5}$	$1.372(44)\cdot 10^{-3}$
$a^{-1}(m_ ho)$	$2.914(54) \; GeV$	1.982(21) GeV	1.690(53) GeV
Phys. volume	$(1.65 \text{ fm})^3$	$(1.61 \text{ fm})^3$	$(1.89 \text{ fm})^3$

" $\mathcal{O}(a^2)$ modification" of the action

5k + 10k sweeps

well-distributed: $\langle Q_{
m top}
angle = 0.38 \pm 0.29$

Quenched Results

• Decay Constants

wall-point AP: $\sum_{\mathbf{x}} \left\langle A_4^{\mathsf{point}}(\mathbf{x},t) P^{\mathsf{wall }\dagger}(t_0) \right\rangle$ wall-wall PP: $\left\langle P^{\mathsf{wall}}(t) P^{\mathsf{wall }\dagger}(t_0) \right\rangle$

decay constant on the lattice

$$f_{PS}^{(\mathsf{latt})} = rac{\mathrm{Amp.}[\mathsf{wall-point} \; \mathsf{AP}]}{\sqrt{rac{m_{PS}}{2} \cdot V \cdot \mathrm{Amp.}[\mathsf{wall-wall} \; \mathsf{PP}]}}$$

Amp's from simultaneous fit

 $\beta = 1.04$

$$Z_A=\!rac{\left\langle \mathcal{A}_4^{(ext{conserved})}P^{\dagger}
ight
angle }{\left\langle A_4P^{\dagger}
ight
angle }$$

Roughly consistent with qChPT

Bernard & Golterman, 1992

- Continuum limit f_K : 4% smaller f_π : 7% larger

NNLO term in the chiral extapolation?

• Kaon B-parameter B_K (bare value)

$$B_{PS}^{(\mathsf{latt})} = \frac{\sum_{\mathbf{x}} \left\langle P^{\mathsf{wall}}(t'_0) Q_{\Delta S=2}(\mathbf{x}, \boldsymbol{t}) P^{\mathsf{wall}} \right\rangle}{\frac{8}{3} \sum_{\mathbf{x}, \mathbf{y}} \left\langle P^{\mathsf{wall}}(t'_0) A^{\mathsf{point}}(\mathbf{x}, \boldsymbol{t}) \right\rangle \left\langle A^{\mathsf{point}}(\mathbf{y}, \boldsymbol{t}) P^{\mathsf{wall}}(t_0) \right\rangle} \left| t'_0 \ll t \ll t_0$$

 $egin{aligned} &-eta &= 1.22: & \xi_1/\xi_0 pprox 50\% ext{ of } -6/(4\pi f)^2, & B_K ext{ differs by } < 1\% \ &-eta &= 1.04: & \xi_1/\xi_0 ext{ consistent with } -6/(4\pi f)^2 \end{aligned}$

• Non-perturbative Renormalization (NPR) for B_K Martinelli *et al.*, 1995 renorm. condition: $Z_q^{-2}Z_Q\Gamma_{latt}^{(4)}(p,m_0,g_0^2;1/a) = \Gamma_{tree}^{(4)}(p,m,g^2)$ $\Gamma^{(n)}(p,m,g)$: n-point Green function (momentum space)

$$\Rightarrow Z_{B_K} = Z_Q/Z_A^2 \qquad \qquad Z_Q^2 Z_Q \times (tree)$$

• operator mixing

- parity conserved part:
$$\langle K | Q_{\Delta S=2} | \overline{K} \rangle = \langle K | (\overline{s}d)_V (\overline{s}d)_V + (\overline{s}d)_A (\overline{s}d)_A | \overline{K} \rangle$$

 \mathcal{O}_{VV+AA}

N.B. $L \leftrightarrow R$ occurs twice in the mixing $\Rightarrow \mathcal{O}(m_{\text{res}}^2)$ effect

 \sim

• renormalization condition to solve mixing: $Z_q^{-2}Z_{ij}\Gamma_{\mathcal{O}_i}^{\text{latt}}(p; a^{-1}) = \Gamma_{\mathcal{O}_i}^{\text{tree}}$

- Estimation of the operator mixing
- mass-pole for $SS \mp PP$ and $TT \implies Z_{ij}$ at largest p and heaviest m_f
- B-parametes from all mixing operators $\Rightarrow B_i$ at $m_f = 0.02$

• Matching

RGI value : $\hat{B}_K = \hat{Z}_{B_K} \cdot B_K^{(\text{latt})}$

 $\hat{Z}_{B_K} = w_{\mathsf{RI}/\mathsf{MOM}}^{-1}(\mu = p_{\mathsf{latt}}) \cdot Z_{B_K}^{\mathsf{RI}/\mathsf{MOM}}(p_{\mathsf{latt}})$ Ciuchini *et al.*, 1999

 $\overline{\text{MS}} \text{ NDR value}: \ Z_{B_K}^{\overline{\text{MS}}}(\mu = 2 \text{ GeV}) = w_{\overline{\text{MS}}}^{-1}(\mu = 2 \text{ GeV}) \cdot \hat{Z}_{B_K}$

• Scaling Property of B_K

Previous works: (a) CP-PACS, 2001 (Iwasaki, PR) $-16^3 \times 40$, $L_s = 16$, $a^{-1} = 1.88$ GeV $-24^3 \times 60$, $L_s = 16$, $a^{-1} = 2.87$ GeV (o) RBC, 2003 (Wilson, NPR) $-16^3 \times 32$, $L_s = 16$, $a^{-1} = 1.92$ GeV

- difference at corse lattice, agreement at fine lattice

- continuum limit: $B_K^{\overline{\text{MS}}, \ \text{NDR}}(\mu = 2 \ \text{GeV}) = 0.569(21)$ $\hat{B}_K = 0.762(27)$ a few % (statistical) error

Dynamical Results

w/ degenerate masses, preliminary

• Spectrums: $m_{\text{sea}} = m_{\text{valence}} \text{ (degenerate)} \rightarrow 0$

 $m_
ho=770\,\,{
m MeV}\Rightarrow\,\,a^{-1}=1.690(53)\,\,{
m GeV}$

• Decay constants

 $f_{\pi}:\ m_{ ext{valence}}=m_{ ext{sea}}
ightarrow 0$

linear fit: 142.2(4.7) MeV

 $m_{
m valence}
ightarrow 0, \; m_{
m sea}
ightarrow 0$

linear fit: 138.7(4.6) MeV

 $f_K:\ m_{ ext{valence}}=m_s/2,\ m_{ ext{sea}} o 0$ linear fit: 159.2(4.6) MeV

NOTE: PQChPT Golterman & Leung, 1998 $m_\pi^2 \equiv 2B_0 m_{
m valence} = 2B_0 m_{
m sea}$

$$f_{\pi}=f\left[1{-}rac{N_f}{(4\pi f)^2}m_{\pi}^2\ln\left(rac{m_{\pi}^2}{\Lambda_{\chi}^2}
ight)
ight]+\mathcal{O}(m^2)$$

No evidence of the curvature

• Kaon B-parameter

PQChPT:
$$B_K = B \Biggl[1 - rac{6}{(4\pi f)^2} M_{\sf PS}^2 \ln \left(rac{m_{\sf PS}^2}{\Lambda_\chi^2}
ight) \Biggr] + {\cal O}(m^2)$$

• Comparison with the quenched results

 f_{π} : consistent with quenched, but not the experiment f_K : consistent with experiment, but not the quenched Tends to be smaller : Dinamical effect?

UKQCD found same tendency

Flynn et al., 2004

Conclusion

- B_K and f_K as an exact science
 - Quenched: Results from two Collabs. agree on a fine lattice

Larger scale dependnce ?

continuum value $\hat{B}_K = 0.762(27)$ $B_K^{\overline{\text{MS}}}(\mu = 2\text{GeV}) = 0.569(21)$

– Dynamical quarks tend to lead smaller B_K

- Future Work (with QCDOC ?)
 - Scale dependence fully understood ? \Rightarrow more data point(s)
 - Size effect?
 - $N_{\text{sea}} = 2 + 1$ to finalize B_K