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Introduction

In order to be conclusive, the numerical simulations of QCD have to be

performed at small quark masses.

“Small” means: close to the physical values (mu,d/ΛQCD ' 0.02,

ms/ΛQCD ' 0.5) or, at least, in the range of applicability of low-order ChPT.

This is a great challenge for algorithms and computers.

Once this is achieved, since the quark masses are free variables, one can obtain

more information about QCD than it is available in experiments.

Using twisted-mass Wilson fermions is a promising way to proceed.

3



I. Montvay Twisted mass

Twisted mass quarks

Frezzotti, Grassi, Sint, Weisz, hep-lat/9909003, hep-lat/0101001;

Frezzotti, Rossi, hep-lat/0306014, hep-lat/0311008, hep-lat/0407002,...

Lattice action: for a mass-degenerate doublet, with the twisted mass µ

Sχ =
∑

x







(χx[µ1 + iγ5τ3 µ]χx) −
1

2

±4
∑

µ=±1

(

χx+µ̂Uxµ[r + γµ]χx
)







≡
∑

x,y

χyQ(χ)yxχx

where µ1 ≡ (2κ)−1 ≡ µ0 + 4r, with the hopping parameter κ.

In numerical simulations the Wilson parameter is usually set to r = 1.

Non-degenerate doublet: by the substitution µ→ µ(+) + γ5τ2 µ(−).
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Introducing the single-flavour fermion matrix

Q(µ1)yx ≡ µ1δyx −
1

2

±4
∑

µ=±1

δy,x+µ̂Uxµ[r + γµ]

one has
Q(χ) = iγ5τ3 µ+Q(µ1)

In order to display µ as the mass, one can define

Q(tm) ≡ −iγ5τ3Q(χ) = µ− iγ5τ3Q(µ1) = µ− iτ3Q̃(µ1)

where Q̃(µ1) ≡ γ5Q(µ1) denotes the hermitean single-flavour fermion matrix.

Q(tm) has an eigenvalue spectrum as, for instance, staggered fermions.

The eigenvalues are on a line perpendicular to the real axis, at a distance µ

from the origin. The parameter µ1 can be tuned to its critical value µ1 = µ1cr.

For the determinant one has:

det(Q(tm)) = det(µ2 + Q̃2
(µ1)

) = det(Q(χ))

5



I. Montvay Twisted mass

The continuum limit and renormalization can be best investigated in the physical
basis of fermion fields. This is related to χx, χx by the chiral transformation

ψx ≡ e
iω2 γ5τ3χx =

(

cos
ω

2
+ iγ5τ3 sin

ω

2

)

χx ,

ψx ≡ χxe
iω2 γ5τ3 = χx

(

cos
ω

2
+ iγ5τ3 sin

ω

2

)

where the twist angle ω depends on the critical untwisted bare quark mass µ1cr

and is defined together with µq (the magnitude of the bare fermion mass) by

µ1 − µ1cr = µ0 − µ0cr = µq cosω , µ = µq sinω

In case of µ1 = µ1cr = (2κcr)
−1 we have “full twist”: ω = π/2, µq = µ.

The lattice action in the physical basis can be written as

Sψ =
∑

x







µqψxψx −
1

2

±4
∑

µ=±1

ψx+µ̂Uxµγµψx

+



µ0crψx −
r

2

±4
∑

µ=±1

(

ψx+µ̂Uxµ − ψx

)



 e
−iωγ5τ3ψx
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Advantages of twisted mass LQCD compared to untwisted Wilson-type LQCD:

• the numerical simulation is faster,

• the lattice artifacts are reduced,

• the operator mixing in the renormalization procedure can be made simpler,

• there exists an exactly conserved axialvector current;

Disadvantage:

• there is an explicit flavour symmetry breaking.
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QCD phase structure: continuum and lattice

As a consequence of spontaneous chiral symmetry breaking, in QCD there is a

singularity at zero quark mass, which is a first order phase transition point.

The simplest manifestation of this singularity is that the scalar quark condensate

changes sign if one approaches zero from positive and negative quark mass.

The phase structure in the complex quark mass plane near zero quark mass is

described by the low energy chiral Lagrangian.

A partial list of the literature:

E. Witten, Annals of Phys. 128 (1980) 363; M. Creutz, hep-th/9505112, hep-ph/9608216;

A. V. Smilga, hep-ph/9805214; I. M., hep-lat/9909020.

8



I. Montvay Twisted mass

First order phase transitions in QCD in the complex quark mass plane with Nf

equal mass quarks, as obtained from the low energy chiral Lagrangian.

Im
 m

Re m

Phase transitions in the complex quark mass plane

Nf = 1

Im
 m

Re m

Phase transitions in the complex quark mass plane

Nf = 2

Im
 m

Re m

Phase transitions in the complex quark mass plane

Nf = 3

For an odd number of flavours there is spontaneous CP-violation for negative

quark mass.

The phase structure of supersymmetric Yang-Mills theory with gauge group

SU(Nf) is similar.
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Chiral effective Lagrangian: for three equal (complex) mass quarks.

L =
f2
π

2

[

Tr
(

∂µU ∂µU
−1

)

+ 2ReTr
(

mqe
−iθU

)]

With an SU(3) ⊗ SU(3)-transformation U can be transformed to

U = eiΦrλr/fπ =⇒







eiα 0 0

0 eiβ 0

0 0 e−i(α+β)







This gives for the effective potential

E(α, β) ∝ cos(α− θ) + cos(β − θ) + cos(α+ β + θ)
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The stationary points of the effective potential, for given θ, are at:

1 : α = β = 0

2 : α = β = 2π/3

3 : α = β = −2π/3

4 : α = β = π − 2θ ...

First order phase transition between 1 ↔ 2 at θ = π/3:

U =







1 0

0 1 0

0 0 1






⇐⇒







e2iπ/3 0 0

0 e2iπ/3 0

0 0 e2iπ/3







Similarly at θ = π 2 ↔ 3 and θ = 5π/3 3 ↔ 1 .
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In the complex mass plane the phase transition at θ = π is at real negative

values which are available to numerical simulations.

The situation is analogous to SYM with SU(3) gauge group.
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Phase structure with Nf = 2 Wilson-type quarks:

Sharpe and Singleton, hep-lat/9804028.

Up to order O(a2) in lattice artifacts the effective potential can be brought to

the form:
Vχ = −c1A+ c2A

2 .

A is the flavour singlet component of the SU(2) matrix valued field Σ in the

low energy effective chiral Lagrangian:

Σ = A+ i
3

∑

r=1

Brτr .

Because of 1 = A2 +
∑3

r=1BrBr the variable A lies in the interval [−1,+1].

In the vicinity of the critical quark mass the constant c2 = O(a2) and the other

parameter c1 is proportional to the bare quark mass.

Possible phase structures: between the positive and negative quark mass phases

there is either an Aoki-phase or a first order phase transition.
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Possible phase structures in the Sharpe-Singleton model:

depending on (the sign of) the parameter c2

quark mass < 0
 phase

Aoki phase quark mass > 0
 phase

m0

µ

1st order phase transitionquark mass < 0
 phase

quark mass > 0
 phase

m0

µ

quark mass < 0
 phase

quark mass > 0
 phase

1st order phase transition
m0

µ
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QCD phase structure: numerical simulations

Recent numerical simulations show that the width of Aoki phase in the bare

mass parameter shrinks to zero (or to a small value) at β ≤ 4.6.

E.-M. Ilgenfritz et al., hep-lat/0309057.

Earlier observations of strong first order phase transitions:

T. Blum et al., hep-lat/9404006;

JLQCD Collaboration, S. Aoki et al., hep-lat/0110088, hep-lat/0409016.

At present, the interpretation of these results is unclear.

The use of different fermion-gauge-action combinations and different number

of quark flavours requires a case-by-case study.

It is not excluded that all these observations are due to the realization of the

second (c2 < 0) Sharpe-Singleton scenario.
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Recent results on the phase structure of Wilson-quarks: Nf = 2

Farchioni et al., hep-lat/0406039, hep-lat/0409098. Metastable states at β = 5.2.

The number of sweeps is given in thousands. The lattice size is 123×24, except

for the right panel in the bottom line where it is 163 × 32. The twisted mass is

µ = 0.01, exept for the middle panel in the bottom line where it is µ = 0.
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Pion mass-squared and quark mass in the two (stable or metastable) phases:
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Pion mass-squared versus quark mass:

the gap in the middle should be filled at larger β
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The presence of a non-zero twisted mass has been very helpful because the

simulations become easier. In spite of this, the small quark masses and the

metastability represent a serious challenge for the update algorithms.

Two optimized updating algorithms have been used:

Multiple Pseudofermion Hybrid Monte Carlo (MPHMC)

M. Hasenbusch, hep-lat/0107019; M. Hasenbusch, K. Jansen, hep-lat/0211042.

Two-Step Multi-Boson (TSMB)

I. M., hep-lat/9510042; qq+q Collaboration, F. Farchioni et al., hep-lat/0206008.

The origin of the jump of the average plaquette between the phases with positive

and negative quark mass can be understood as a consequence of broken chiral

symmetry allowing a mixing between the plaquette field and the condensates

〈χ̄χ〉 and 〈χ̄iγ5τ3χ〉.

Extension of the Sharpe-Singleton model to non-zero twisted mass:

G. Münster, hep-lat/0407006; L. Scorzato, hep-lat/0407023;

S. Sharpe, J. Wu, hep-lat/0407025, hep-lat/0407035; S. Aoki, O. Baer, hep-lat/0409006.
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Numerical simulations with Wilson-fermion+DBW2 lattice action:

Farchioni et al., DESY 04-162.

The first order phase transition can be related to the existence of a large number

of non-physical (“exceptional”) small eigenvalues of the Wilson-Dirac operator

on the gauge fields generated by the interplay of the Wilson fermion and Wilson

gauge action.

qq+q Collaboration, hep-lat/0206008.

Numerical simulations with Wilson action on 83 · 16 lattice,

a ' 0.27 fm for decreasing quark mass: mq ' 5/3ms → mq ' 1/5ms
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The small unphysical eigenvalues can be suppressed by taking renormalization

group improved (RGI) gauge actions as the Iwasaki-action or the DBW2 action:

Sg = β
∑

x



c0

4
∑

µ<ν;µ,ν=1

{

1 −
1

3
ReU1×1

xµν

}

+ c1

4
∑

µ,ν=1

{

1 −
1

3
ReU1×2

xµν

}





Normalization condition c0 = 1 − 8c1.

The coefficient c1 takes different values for various choices of RGI actions:

c1 =

{

−0.331 Iwasaki action,

−1.4088 DBW2 action.

The Iwasaki-action is often used in dynamical fermion simulations in

combination with the clover fermion action.

Most dynamical domain-wall fermion simulations use the DBW2 action.

We have chosen the original Wilson fermion action.

21



I. Montvay Twisted mass

The lattice spacing (defined by r0/a) has been tuned to the same value

a ' 0.2 fm as at β = 5.2 for the Wilson-plaquette action.

Results on 123 · 24 lattice at vanishing twisted mass µ = 0:
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At β = 0.55 (a ' 0.3 fm) there is an Aoki-phase between κ = 0.190 − 0.191.
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The dependence of Mr ≡ (r0mπ)
2 on the (bare) PCAC quark mass Zqamq:

0
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The point close to the origin has a pion mass mπ ' 160 MeV, but at this point

the positive quark mass phase is metastable. The computational cost is less

than with the Wilson-plaquette action, it behaves as C ' F (amq)
−1Ω.
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The metastability at β = 0.67, µ = 0.01 is barely visible on a 122 · 24 lattice:

The jump of the plaquette is at least by a factor of 10 smaller than with the

Wilson-plaquette gauge action at β = 5.2, µ = 0.01.

The “half-moons” of the eigenvalue distributions are straightened:

blue = β = 0.67, µ = 0, κ = 0.168; Right panel: Wilson-plaquette action

red = β = 0.67, µ = 0.01, κ = 0.168. β = 5.20, µ = 0.01, κ = 0.1715.
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Discussion

The introduction of a twisted mass in simulations with Wilson-type quarks is

an alternative to staggered quarks.

Before starting phenomenologically relevant simulations with u, d, s (or u, d, s, c)

quarks, further exploratory work is needed.

In particular, the β-dependence of the phase structure has to be investigated.

It is expected that the minimal pion mass and the jump in the plaquette

decrease for increasing β. In the continuum limit the first order phase transition

line is expected to shrink to a first order phase transition point.

The effective potential (i.e. the phase structure) can be improved by changing

the gauge action only. With RGI gauge actions the updating is faster.

Question: the phase structure of QCD in staggered quark simulations?
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Discussion session: twist angles

Frezzotti, Grassi, Sint, Weisz, hep-lat/0101001 (FGSW);

Frezzotti, Rossi, hep-lat/0306014 (FR1).

Vector and axialvector currents: in the “physical”

V ψSxµ ≡ ψx
1

2
τSγµψx , AψSxµ ≡ ψx

1

2
τSγµγ5ψx

and “twisted” basis:

V χSxµ ≡ χx
1

2
τSγµχx , AχSxµ ≡ χx

1

2
τSγµγ5χx

The relations between them are

V ψSxµ = cosω0V
χ
Sxµ + sinω0A

χ

S̄xµ
, AψSxµ = cosω0A

χ
Sxµ + sinω0V

χ

S̄xµ

where we used

ψx =

(

cos
1

2
ω0 + iγ5τ3 sin

1

2
ω0

)

χx , ψx = χx

(

cos
1

2
ω0 + iγ5τ3 sin

1

2
ω0

)
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First let us neglect the Z-factors of multiplicative renormalization: Z = 1.

The physical currents satisfy the WT-identities
〈

Oy · ∆
b
xµV

ψ
Sxµ

〉

= O(a) ,
〈

Oy · ∆
b
xµA

ψ
Sxµ

〉

= 2mq0 〈OyPSx〉 + O(a)

Here we shall consider the charged components S → ± with τ± ≡ 1
2(τ1 ± iτ2).

mq0 is some bare quark mass, ∆b
µ denotes the backward lattice derivative and

the pseudoscalar density is

PSx ≡ ψx
1

2
τSγ5ψx = χx

1

2
τSγ5χx

If in the vector WT-identity we choose for the quantity O
(−)
y = P

(−)
y then we

obtain a possible definition of ω0:

tanω0 =

〈

P
(−)
y · ∆b

xµV
χ(+)
xµ

〉

i
〈

P
(−)
y · ∆b

xµA
χ(+)
xµ

〉 + O(a)
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The twist angle ω0 is defined for any fixed (µ1, µ). One can also define the

bare PCAC (or Axial-Ward-Identity-) quark mass by the axialvector current:

µq0 ≡ µPCACq0 ≡ Z−1
A amAWI

q ≡

〈

P
(−)
y · ∆b

xµA
ψ(+)
xµ

〉

2
〈

P
(−)
y P

(+)
x

〉 + O(a)

=
cosω0

〈

P
(−)
y · ∆b

xµA
χ(+)
xµ

〉

− i sinω0

〈

P
(−)
y · ∆b

xµV
χ(+)
xµ

〉

2
〈

P
(−)
y P

(+)
x

〉 + O(a)

Combining this with the definition of ω0 one can also write

µq0 =

√

〈

P
(−)
y · ∆b

xµA
χ(+)
xµ

〉2

−
〈

P
(−)
y · ∆b

xµV
χ(+)
xµ

〉2

2
〈

P
(−)
y P

(+)
x

〉 + O(a)
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Introducing the Z-factors:

Since up to now the vector WT-identity is used for the definition of ω0, let us

rename it now as ω0 ≡ ω0V .

One can define for the axialvector current another ω0 ≡ ω0A by the axialvector

WT-identity. A possibility is to require

〈(

cosω0A∆b
yνA

χ
−yν + i sinω0A∆b

yνV
χ
−yν

) (

cosω0A∆b
xµA

χ
+xµ − i sinω0A∆b

xµV
χ
+xµ

)〉

〈(

cosω0A∆b
yνA

χ
−yν + i sinω0A∆b

yνV
χ
−yν

)

P+x

〉

=

〈

P−y

(

cosω0A∆b
xµA

χ
+xµ − i sinω0A∆b

xµV
χ
+xµ

)〉

〈P−yP+x〉
= 2mPCAC

q0 .

The last equality shows that, in general, if ω0V 6= ω0A then the definition of

the bare PCAC quark mass involves ω0A and not ω0V .
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The definition of the renormalized currents is, according to FR1:

V̂Sµ =
1

ZM(ω)

[

ZV zm cosωV χSµ + ZA sinωAχ
S̄µ

]

,

ÂSµ =
1

ZM(ω)

[

ZAzm cosωAχSµ + ZV sinωV χ
S̄µ

]

where ZM(ω) = [(zm cosω)2 + (sinω)2]
1
2. Then with

tanω0V =
ZA
ZV zm

tanω , tanω0A =
ZV
ZAzm

tanω

we have

V̂Sµ =

√

(ZV zm cosω)2 + (ZA sinω)2
√

(zm cosω)2 + (sinω)2

[

cosω0V V
χ
Sµ + sinω0VA

χ
S̄µ

]

,

ÂSµ =

√

(ZAzm cosω)2 + (ZV sinω)2
√

(zm cosω)2 + (sinω)2

[

cosω0AA
χ
Sµ + sinω0AV

χ
S̄µ

]
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Comparison with V ψSµ, A
ψ
Sµ implies

V̂Sµ =

√

(ZV zm cosω)2 + (ZA sinω)2
√

(zm cosω)2 + (sinω)2
V ψSµ ,

ÂSµ =

√

(ZAzm cosω)2 + (ZV sinω)2
√

(zm cosω)2 + (sinω)2
AψSµ

These relations show, respectively, the multiplicative renormalization of V ψ
Sµ

defined with ω0 = ω0V and AψSµ defined with ω0 = ω0A.

Since the renormalized PCAC quark massmPCAC
q is defined by the renormalized

axialvector current Â, the renormalization of the PCAC quark mass is given by

mPCAC
q =

√

(ZAzm cosω)2 + (ZV sinω)2

ZP
√

(zm cosω)2 + (sinω)2
mPCAC
q0 .
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In the above formulas ω denotes the twist angle used in the definition of the

physical basis for the fermion field. Its relation to ω0V and ω0A is given, for

instance, by
tanω0V tanω0A =

(

tanω

zm

)2

The relations between ω0V and ω0A to ω simplify for ω = ω0V = ω0A = 0, π/2.

For a general ω let us define Zi ≡ 1 + δZi, then assuming that δZi is small, an

expansion gives:

sinω0V = sinω
{

1 + cos2ω [δZA − δZV − δZm] + O((δZ)2)
}

,

sinω0A = sinω
{

1 + cos2ω [δZV − δZA − δZm] + O((δZ)2)
}

.

ω is defined by the bare untwisted mass µ1 ≡ 1/(2κ) and bare twisted mass µ

as
ω = arctan

µ

(µ1 − µ1cr)

where µ1cr ≡ 1/(2κcr) is the “critical” bare untwisted quark mass.
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Connection to FGSW: another twist angle can also be introduced:

α ≡ arctan
µr
µ1r

where µ1r and µr are the renormalized untwisted and twisted mass, respectively.

It is related to ω by tanα = tanω/zm. With this “renormalized” twist angle

the expressions of the renormalized currents are simplified to

V̂Sµ = ZV cosαV χSµ + ZA sinαAχ
S̄µ

,

ÂSµ = ZA cosαAχSµ + ZV sinαV χ
S̄µ

The twist angles in the vector and axialvector currents are defined now by

tanωV =
ZA
ZV

tanα , tanωA =
ZV
ZA

tanα ; tan2 α = tanωV tanωA

In the previous relations we have to replace:

ω → α , ω0V → ωV , ω0A → ωA , zm → 1 , δzm → 0
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Using parity restauration: (F. Farchioni)

The numerical determination of ωV and ωA from the Ward-Takahashi identities

is possible but not very easy.

A simpler possibility is to impose for the renormalized currents the restauration

of parity conservation. Suitable matrix elements are, for instance,

∑

~x,~y

〈Â+x0 V̂−y0〉 = O(a) ,
∑

~x,~y

〈V̂+x0P−y〉 = O(a)

This has for the vector and axialvector twist angle the solution

tanωV =
−i

∑

~x,~y〈V
χ
+x0P−y〉

∑

~x,~y〈A
χ
+x0P−y〉

,

tanωA =
i
∑

~x,~y〈A
χ
+x0 V

χ
−y0〉 + tanωV

∑

~x,~y〈A
χ
+x0A

χ
−y0〉

∑

~x,~y〈V
χ
+x0 V

χ
−y0〉 − i tanωV

∑

~x,~y〈V
χ
+x0A

χ
−y0〉
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Numerical results at β = 5.2 on 123 · 24 lattice:

left: ω ≡ α, right: pseudoscalar decay constant
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Discussion session: split doublets

Let us introduce another fermion matrix by

Q(ft) ≡
1

2
(1 − iγ5τ3)Q(χ)(1 − iγ5τ3) = µ+N − iτ3W̃(µ1)

where

Nyx = −
1

2

±4
∑

µ=±1

δy,x+µ̂Uxµγµ , Ryx = −
1

2

±4
∑

µ=±1

δy,x+µ̂Uxµ , W̃(µ1) = γ5(µ1+R)

and we tune µ1 to its critical value µ1 = µ1cr.

This means that we are at full twist.

The mass splitting in the doublet is introduced by the replacement

µ→ µ(+) + τ1µ(−) in Q(ft).

Becasue of
Q(χ) = iγ5τ3[µ(+) + γ5τ2µ(−)] +Q(µ1) ,
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on the twisted mass basis we have to substitute µ→ µ(+) + γ5τ2µ(−).

The hermitean fermion matrix is now

Q̃(χ) ≡ γ5τ1Q(χ) = τ2µ(+) + γ5µ(−) + τ1Q̃(µ1) ,

with the single-flavour hermitean matrix Q̃(µ1) ≡ γ5Q(µ1).

The masses can be diagonalized by an isospin rotation: τ3 → τ1, τ1 → −τ3.

The (bare) mass eigenvalues are: µs ≡ µ(+) − µ(−) and µc ≡ µ(+) + µ(−).

One can show (Frezzotti, Rossi, hep-lat/0311008) that the fermion determinant

detQ(ft) = detQ(χ) = det Q̃(χ) is positive for |µ(+)| > |µ(−)|.

The sign problem of negative determinants starts to occur at the singularity

corresponding to the zero of the smaller (renormalized) mass in the doublet.
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