

Charm Physics

Chris Maynard University of Edinburgh UKQCD Collaboration

Flavour physics

- Heavy flavour sector
 - Charm not so well served by HQET
 - CLEO-c and B-Factories \rightarrow lots of data
 - f_{Ds} critical quantity
- Charmed hadrons accessible on lattice
 - $am_{c} < 1$
 - Simulate directly on lattice
 - Easy to control effective theory techniques

Outline

- Past calculations Quenched
 - Ds spectrum New states
 - <u>A. Dougall, R.D. Kenway</u>, C.M., <u>C. McNeile</u> Phys.Lett. B569 (2003) 41-44
 - Charm quark mass
 - <u>A. Dougall, C.M., C. McNeile</u> hep-lat/0409089
- Future calculation dynamical fermions
 - f_{Ds} and Ds spectrum: Overlap on KS sea
 - Heavy quarks on a GW sea

New states in D_s spectrum

- B. Aubert et al. (BaBar) Phys.Rev.Lett 90 242001, 2003 Cited 162 times!
- Discovery of new narrow state
 - Mass ~ 2.32 GeV
 - Decays to $D_s^+ \pi^0 J^P = 0^+(?)$
 - Is it $C\overline{s}$ meson?
- Confirmed by Belle and CLEO
 Other narrow states discovered

Ds Spectrum

Potential model mass is high, resonance is wide

BaBar: Narrow resonance in D+ π channel J^P=0⁺

speculation that new state is not a meson but 4 quark molecule

Problems for theory?

- These states "not predicted by theory"
- Some melodramatic statements in popular press
- "This sends theorists back to their drawing boards"
 - SLAC director Jonathan Dorfan BBC
- Predictions come from Quark Model not QCD

Correlation functions

Local correlation functions

 $\Omega_{ij}(x) = \psi_i(x) \Gamma \psi_j(x)$ $\Gamma = \{1, \gamma_\mu, \gamma_5, i\gamma_5 \gamma_\mu, \sigma_{\mu\nu}\}$

Quenched β =6.2 Valence quark masses roughly \overline{cs}

Wilson Glue, Clover-Wilson quarks NP c_{SW} Quenched and $N_F=2$

{β,κ}	V	a ⁻¹ (GeV)	#cfgs	M_{PS}/M_{V}
6.2,0	24 ³ x48	2.91	216	N/A
6.0,0	16 ³ x48	2.12	496	N/A
5.93,0	16 ³ x32	1.90	623	N/A
5.2,0.1350	16 ³ x32	1.91	202	0.70(1)

Scale set by $r_0 = 0.5 \text{ fm}$

ILFT Japan

P wave states and symmetry

- States labelled by spin of light quark j $L = 1 \implies j = \{\frac{1}{2}, \frac{3}{2}\}$
- Plus spin of heavy quark \rightarrow 2 doublets $j = \frac{1}{2} \ni J = \{0, 1\}$ $j = \frac{3}{2} \ni J = \{1, 2\}$
- J=1 states no definite C
 - Mixing \rightarrow see lowest state on lattice

Heavy and Chiral symmetry

- Double limit → parity doublets {0⁻,1⁻} {0⁺,1⁺} degenerate
- Spontaneous χ-sym breaking splits
 - $\Delta_{M1}(1^{+}-1^{-}) = \Delta_{M0}(0^{+}-0^{-})$

CLEO Δ_{M1}=351(2), Δ_{M0}=350(1) MeV

$$\frac{C_{i}(t)}{C_{j}(t)} = \lim_{t \to \infty} A_{ij} e^{-(m_{i} - m_{j})t}$$

- Fitting ∆m can help reduce stat errors
- Interpolate mass splittings
 - $-\Delta_{M0}=0^{+}-0^{-}, \Delta_{M1}=1^{+}-1^{-}, \Delta_{MH}=1^{-}-0^{-}$
 - (m_{PS})² for lights kaon for strange
 - $-1/m_{PS}$ for heavies $-M_{Ds}$ for charm

Continuum extrapolation

Green and blue Symbols show Δ_{M1} and Δ_{M0} Red is Δ_{MH}

 $\Delta_{\rm M0} = \Delta_{\rm M1}$

No statistically significant effect for DF

Ds Spectrum II

Results *consistent* with mesonic interpretation

Narrow width as state is below threshold and decay to pion channel is isospin suppressed

Charm quark mass

- $M_c \sim M(\eta_c)/2 \Lambda_{QCD} \sim 1.3 \text{ GeV}$
- M_c is both scale and scheme dependent
 Not well known quantity

 $1.0 < \overline{m}_{\rm charm}^{\overline{MS}}(\overline{m}_{\rm charm}) < 1.4 {
m ~GeV}$ PDG2002

Many quenched calculations

 Require dynamical fermions to do better

General strategy

- Coefficients {Z_J, b_J, c_J} not known NP on coarse lattice
 - Use tadpole improved PT Bhattacharya *et al* hep-lat/0009038 in <u>MS</u> scheme
 - Lattice artefacts $O(\alpha_s a)$ and $O(a^2)$
 - coarsest lattice $\rightarrow am_q \sim 0.7$
 - Compare to FNAL method
- Interpolate quark masses to charm (Ds)
- Scale $m_c(\mu=a)$ to $m_c(\mu=m_c)$ with RunDec

Axial Ward Identity

$$m_{ij} = rac{\partial_4 \langle A_4^I \mathcal{O} \rangle}{2 \langle \mathbf{P} \mathcal{O} \rangle} = rac{m_i + m_j}{2}$$

 $egin{aligned} A_4(x) &= ar{\psi}_i(x) \gamma_4 \gamma_5 \psi_j(x) \ & \mathbf{P}(x) &= ar{\psi}_i(x) \gamma_5 \psi_j(x) \end{aligned}$

$$A_4^I = A_4 + ac_A \partial_4 \mathbf{P}$$

$$m_A = \frac{Z_A}{Z_P} (1 + [b_A - b_P]am)m$$

Bare axial mass

Effective mass plot for axial Ward identity mass

Open symbols show the effect of NP C_A

Effect of NP C_A half as big as am_L

2004/9/30

 $\beta = 6.2 \kappa_{\rm H} = 0.1200 \kappa_{\rm L} = 0.1346$

Hopping parameter mass

$$m_q = \frac{1}{2} \left(\frac{1}{\kappa} - \frac{1}{\kappa_{\rm crit}}\right)$$

$$m_V = Z_M (1 + b_m a m_q) m_q$$

 $b_m = -1/2$ at tree-level

ILFT Japan

FNAL Method

Aim to include all *O(am)ⁿ* lattice artefacts Tree level definitions ...

$$m_2 = \frac{e^{m_1} \sinh m_1}{1 + \sinh(m_1)} \qquad m_1 = \ln(1 + m_q) \sim m_q - \frac{1}{2}m_q^2 + \cdots$$
⁽²⁾

 m_1 same as m_V to O(am)

Use one-loop definitions in Mertens *et al* hep-lat/9712024

Dispersion relation

 $E^2 = M_1^2 + rac{M_1}{M_1} ar{p}^2$. - $\mathcal{O}(ec{p}^4$ $\partial^2 E$

 $=\overline{\partial p_k^2}$

kinetic mass

2004/9/30

 M_2

M₁ vs M₂ Hadron masses

$M_2 = M_1 + (m_2 - m_1)$

Tree-level M₂ is a poor estimate of NP M₂

 $\begin{array}{l} \mbox{1-loop} \ M_2 \ track \ NP \\ M_2 \end{array}$

Use 1-loop M₂

Functional form of interpolation

HQS $f(x) = b_0 + \frac{b_1}{x} + \cdots$ But mass have O(am) corrections $f(x) = a_0 + a_1x + \cdots$

Same in fixed range

$$\frac{1}{4} < x < \frac{3}{4}$$

Quenched data

Lattice artefacts O(a) and O(α_sa) But O(a²) from data Not linear!

Sontinuum limit of "ALPHA" masses

Consistent defⁿ of quark masses should give same continuum limit (Rolf and Sint JHEP 0212 (2002) 007)

Simultaneous fit to m_A and m_V (quadratic)

Sontinuum limit of "ALPHA" masses

Consistent defⁿ of quark masses should give same continuum limit (Rolf and Sint JHEP 0212 (2002) 007)

Simultaneous fit to m_A and m_V (quadratic)

Continuum limit of FNAL masses

Simultaneous fit to fnal masses

Continuum limits agree!

DF data at fixed lattice spacing

Open symbols show DF data

Alpha data quenched is too high at fixed lattice spacing. Lattice artefacts?

No effect for FNAL masses

fDs: Overlap on KS sea

- See talk by RDK for background
- a ~ 0.125fm → am_c ~ 1
 - Rather coarse lattice spacing
- Overlap lattice artefacts O(am)²
 - \rightarrow largest (am)² ~ ³/₄
- Multi-mass solver
 - Charm quark propagator is free!

From Axial Ward Identity Chiral symmetry → only Z_A needed

 $Z_A \langle \partial_\mu A_\mu \mathcal{O} \rangle = 2 m_q \langle \mathbf{P} \mathcal{O} \rangle$

Can define Z_A in terms of C_{PP} and C_{A4P} This cancels in the definition of f_{Ds} Determine renormalised f_{Ds} from Ps correlator

Operating mixing is under control

Heavy Quark Mass Dependence of f_{Ds}

Summary

- QCL: Ds mesons consistent with new charm states
- ALPHA and FNAL m_c same QCL
 - Stat and sys error large from coarse a
- Minimal evidence for sea quark effects
 - Heavy sea / fixed lattice spacing
- HQ from overlap very promising
- GW on GW all above, plus semileptonics