

Exploratory Study of Overlap Valence Quarks on a Staggered Sea

UKQCD

gold plated: unique values of quark masses give agreement with experiment for known quantities within 3% (SM consistent)

 \rightarrow currently being realized on the MILC improved staggered 2+1 flavour lattices

solid gold: many zero temperature masses and matrix elements computable with all sources of uncertainty below 3% (SM falsifiable)

 \rightarrow achievable in principle using dynamical GW implementations

or by finding $D_{\text{local}} \equiv (D_{\text{staggered}})^{1/4}$

mixed actions

UKQCD •

$$\langle O \rangle = \frac{1}{Z} \int DU \, \det^{1/2} \left(D_{st} \left[U \right] + m_{ud} \right) \det^{1/4} \left(D_{st} \left[U \right] + m_s \right) e^{-S_G} \left[U \right]$$

$$\times O \left[U, \frac{\delta}{\delta \overline{\eta_i}}, \frac{\delta}{\delta \eta_i} \right] e^{-\sum_i \overline{\eta_i} D_{ov} \left[U \right] \left(m_i \right)^{-1} \eta_i} \Big|_{\overline{\eta_i}, \eta_i = 0}$$

$$D_{st}^{-1/4}$$

$$S = S_G \left[U \right] + \sum_{l=ud} \overline{\chi_l} \left(D_{st}^{loc} \left[U \right] + m_{ud} \right) \chi_l + \overline{\chi_s} \left(D_{st}^{loc} \left[U \right] + m_s \right) \chi_s$$

$$+ \sum_i \left\{ \overline{q_i} D_{ov} \left[U \right] \left(m_i \right) q_i + \phi_i^+ D_{ov} \left[U \right] \left(m_i \right) \phi_i \right\}$$

$$D_{ov}(m_i) \ge m_i$$

symmetries & renormalisation

- unitary if 1-taste staggered action is local
- exact $SU(N_f) \times SU(N_f)$ chiral symmetry for $m_i = 0, i = 1, ..., N_f$

$$\delta q = i\varepsilon\tau\gamma_5 \left(1 - \frac{1}{2}D_{\rm ov}\right)q$$
$$\delta \overline{q} = i\varepsilon\overline{q} \left(1 - \frac{1}{2}D_{\rm ov}\right)\gamma_5\tau$$

- axial *U*(1) anomaly and index theorem
- Ward identities

light sea (m_{ud}, m_s) and valence quark masses (m_i) may be determined from the pseudoscalar meson nonet

UKOCD

parameter values

- MILC 2+1 flavour improved staggered configurations
 - exploratory study uses 2 ensembles of 10 configurations

$$V = 20^{3} \times 64, \quad a = 0.12 \text{ fm}, \quad L = 2.5 \text{ fm}$$
$$\frac{am_{ud}}{am_{s}} = \frac{0.02}{0.05}, \quad \frac{0.03}{0.05}$$

- 3 iterations of HYP-smearing applied to each configuration
 - smoother gauge fields improve localisation of D_{ov}
 - low eigenvalues of $D_{\rm st}$ move closer to those of $D_{\rm ov}$
- overlap operator in multi-mass form
 - 4 light + 3 heavy valence quark masses am_i

UKOCD

effect of HYP smearing

UKQCD

Richard Kenway

pseudoscalar meson effective mass

our errors are underestimated

Richard Kenway

UKQCD

chiral behaviour

UKQCD

UKQCD

nucleon effective mass

UKQCD

chiral behaviour

UKQCD

smaller discretisation errors than staggered valence quarks?

Degenerate Decuplet Mass vs Pseudoscalar Mass Squared 10 configs $am_{sea} = 0.02/0.05$ $am_{sea} = 0.03/0.05$ 1.4 MILC $am_{sea}^{\Delta}=0.02/0.05$ Φ MILC am $^{\Delta}_{sea}$ =0.03/0.05 Physical Δ 1.2 Δ Physical Ω ∇ $am_{3/2}$ 0.8 $(am_{ssbar})^2$ 0.6 0.05 0.1 0.15 0.2 0.25 0.3 0 $(am_{Ps})^2$

UKQCD

UKQCD

- overlap valence on a staggered sea is unitary if the staggered sea is
- advantages relative to staggered valence quarks
 - similar symmetries, Ward Identities and anomaly to continuum QCD
 - numerically clean and may have smaller discretisation effects
- disadvantages
 - more computationally expensive
- both require sea and valence quark masses to be matched
- next steps
 - chiral perturbation theory for the mixed action
 - feasibility study on high-statistics 2+1 flavour improved staggered ensemble
 - compute pseudoscalar meson nonet masses
 - \rightarrow match sea and valence quark masses