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There are dangerous lattice animals

Yy

— discretization errors
— chiral symmetry

— computational cost



Discretization Errors < violation of chiral symmetry

Wilson-Dirac operator
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Chiral extrapolation

ZeRo collaboration (Guagnelli, K.J., Palombi, Petronzio, Shindler, Wetzorke)
perform continuum extrapolation of a twist-2, non-singlet pion operator
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= no data in interesting region of pion mass
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— problem appears for Wilson fermions

Why are

we not able to reach realistic pion mass?
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in addition to

natural slowing down as m, — 0
e very small eigenvalues

e slow down algorithms

e spoil signal

— similar (maybe worse) for O(a)-improved Wilson fermions

(staggered fermions: size of systematic error)



solution: Ginsparg-Wilson relation

Y5 D + Dvys = 2aDv5D

= D 'y5 + D~ = 2a7s
D! anti-commutes with 5 at all non-zero distances
— only mild (i.e. local) violation of chiral symmetry

Ginsparg and Wilson arrived at this expression already
in the early days of lattice gauge theories from a completely different path
< block spinning from the continuum

one solution of GW relation: overlap operator D, (Neuberger)
(alternatives: domain wall fermions and perfect actions)

Dov = [1 — A(AT4)~1/2]

with A =1+ s — Dy(m, = 0); s a tunable parameter, 0 < s < 1



Adding a mass term (naive definition)

Doy = g + [1 — A(ATA)/]

— exact (lattice) chiral symmetry at m, = 0

— infrared safe: quark mass m,
< can reach very small quark masses

— O(a)-improved

«— computationally very demanding,

O(10-100) more expensive than standard Wilson fermions

Nevertheless: exist problems for overlap fermions: e-regime of chiral perturbation
theory, complicated operator mixings



Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

equivalent Wilson-Dirac operator

Dw = mqeiw'75T3 + 77“ [Vﬂ + VZ] — agv;vu + M., = mqew%T3 + Derit + Dy

w = 0— usual Wilson-Dirac operator

w = T/2 — iy5T3m, : twisted mass term at zero quark mass

iwfy57'3

under parity, R5 = e

e .. Invariant

iw'y57'3 iw'y57'3

o D.— —D,

= Dyy invariant under R5 X (r — —r) X (mg — —my)



Wilson twisted mass QCD

It can be shown than
__(_1\P
(O omery = (D (O

e action invariant under R

e change of integration measure compensated by the parity transformation of
operator



Wilson twisted mass QCD

Symanzik expansion
(O] (myry = [E(r) + amgn(r)] (O)[™ + ax(r) (O") o

cont

(O (g —ry = [E(=1) = amgn(=r)] (O) [ + ax(—r) (O] “

in addition
Oy = (=D {O)T,
= &(r) = +8(=r) , amgn(r) = —amgn(=r) , ax(r) = —ax(-r)

= 3 [(OMny + (O)] g 2| = 600 (ON" + O

2

= at my = mo — M, = 0 the Wilson average is O(a) improved



Wilson twisted mass QCD

<O>’mq,r,w:7r/2 - % [<O>‘mq,r,w:7r/2 + <O>|mq,—r,w:7r/2}

= choose w = +7/2 and bare quark mass the critical quark mass
= all quantities even in w = +7/2 are automatic O(a) improved

Examples:
e hadron masses
e matrix elements

e form factors

e decay constants



Hopping paramter representation

V2K - V25 — - 1
X = 53X X7 grXe K= g0

S x, Ul = ) {X(flﬁ) (1 + 2iauf<:7573)x(w)

— wx(z)) ( z, 1) (1 + ) x( + aft)

+ UMz — afi, 1) (r — yu)x (@ — “ﬂ)>}

— maximal twist: K — Kerit

Frezzotti, Rossi: kit to be known to O(a)
we take Kt from pion mass intercept
Aoki, Bar criticism — talk by S. Aoki

— talk by A. Shindler



Field rotations and bilinears

field rotations
Y(z) = e 27y () = (cos¥ + iysmssin) x(z)

Y(x) = y(x)ei?”’73 = X(x) (cos 5 + 1573 sin %)

bilinears example: axial and vector currents
“physical basis” (unprimed quantities)
“twisted basis” (primed quantities)

AT = cos(w)Af + e3P sin(w)Vf(Oz =1,2)
= Ai(oz = 3)

Vf‘ — Cos(w)V/f + 300 Sin(w)Aﬁ(a =1,2)
= Vi(a = 3)



Scaling test at heavy mass
K.J., A. Shindler, C. Urbach, |. Wetzorke

Derit (Kerit) determined with
pure Wilson fermions
correlation function

fp(t) = 2 x{P*(x)P(0))
rom, = 1.79 = 750MeV
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Pion decay constant

definition of Fps: (0|A}|PS) = mpsFps
twisted basis, at w = 7/2, the axial current is related to the vector current
8M<O|VM2IPS> = Fpsmbg -
vector ward identity implies Zp = Z !
Fosmbs = 0,(0]V2|PS) = 211, (0| P! PS)

For asymptotic Euclidean times, the pseudoscalar correlation function f7 assumes
the form

1/ _ JOPYPS)? [ —m —mpe(T—
fp(t) = Imps '(6 pst 4 e=mps( t)) oLt T .

fitting the pseudo scalar correlation function for large time separation, obtain the
pseudoscalar mass and

(0] PPS)[*/mps

from which we get |(0|P|PS)]|.



Pion decay constant

scaling result and comparison to O(a) improved Wilson fermions
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twisted mass against overlap fermions: pion mass
W. Bietenholz, T. Chiarappa, M. Hasenbusch, K.J., K. Nagai, M. Papinutto,

L. Scorzato, S. Shcheredin, A. Shindler, C. Urbach, U. Wenger, |. Wetzorke

here: only one 3 = 5.85
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= twisted mass simulations can reach quarks masses as small as overlap
substantially smaller than O(a)-improved Wilson fermions



twisted mass against overlap fermions: pseudoscalar decay constant
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= competition of Wilson term and twisted mass term
—1 242
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= check continuum limit



PCAC quark masses
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twisted mass against

overlap fermions: m, and baryon masses

1.5 ‘ T T T T ‘ T
&
& ®
12+ <> @
¢ O}
{> @
\
09—
< :% v A
= i A
A
osPE [ A
0 Mp overlap
Mp chiral extr. (overlap)
03 A Mp twisted mass
v M, overlap
O M, twisted mass
0 | ‘ | ‘ | ‘ | o M decuplet twisted mass
0 0.1 0.2 0.3 0.4 0.5
2
M a
(M_2)
I
09—
0.8 m
| o
20- 07 o O
I $ ¢
ot T
06 ! O overlap 12°x24
! O chiral extr. (ov.)|
O tm 16'x32
0.5
04 Ll ‘ L \ ‘ \ ‘ \ \
0 0.1 0.2 0.3 0.4 0.5

(M 2)°

e for too small (m,a):

— signal noisy
— difficult to extract ground state



Cost comparison
T. Chiarappa, K.J., K. Nagai, M. Papinutto, L. Scorzato,

A. Shindler, C. Urbach, U. Wenger, |I. Wetzorke

e testing different solvers
CG, MR, CGS, GMRES, SUMR

e testing pion masses m, = 720MeV, m, = 390MeV and m, = 250Mev

also one larger mass

e lattices 12¢ 16%

e variety of algorithmic improvements
— adaptive precision
— chiral projection
— eigenvalue deflation
— multiple mass solver

e missing: preconditioning (running)

e tested also eigenvalue computation
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Best algorithm for overlap fermions
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CGS

CG

BiCGstab

GMRES

Best algorithm for twisted mass fermions
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Timings as function of quark mass

Timings for the inversion of the overlap operator
16’ |attice, $=5.85, 5=0.6, 40 Q2 eigenvectors projected, on JUMP
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Cost comparison

V.m, Overlap ™ rel. factor
124, 720Mev || 48.8(6) | 2.6(1) 18.8
12%,390Mev | 142(2) | 4.0(1) 35.4
164, 720Mev | 225(2) | 9.0(2) 25.0
16%,390Mev || 653(6) | 17.5(6) 37.3
164, 250Mev || 1949(22) | 22.1(8) 88.6

Best absolute timings in seconds on one node of JUelich MultiProzessor (JUMP)
IBM p690 Regatta in Juelich

find: Wilson twisted mass fermions are 20-80 cheaper than overlap fermions



Conclusion

% overlap and Wilson twisted mass fermions

— Of(a)-improved

— safe against exceptionally small eigenvalues
= allow for simulations at small quark masses

— pion mass as small as 230 MeV
— twisted mass: unexpected behaviour of, e.g., f; at very small quark mass

=- conceptual versus practical advantages



