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There are dangerous lattice animals

→ discretization errors

→ chiral symmetry

→ computational cost

1



Discretization Errors ↔ violation of chiral symmetry

Wilson-Dirac operator

DW = mq + 1
2γµ

[
∇µ +∇∗

µ

]
− ar1

2∇
∗
µ∇µ

∇µψ(x) = 1
a [U(x, µ)ψ(x+ aµ̂)− ψ(x)] , U = eiag0Aµ(x)

∇∗
µψ(x) = 1

a [ψ(x)− U(x− aµ̂, µ)ψ(x− aµ̂)]

LPHAA
Collaboration

→ two definitions of quark mass

→ large discretization effect
linear in the lattice spacing
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Chiral extrapolation

ZeRo collaboration (Guagnelli, K.J., Palombi, Petronzio, Shindler, Wetzorke)

perform continuum extrapolation of a twist-2, non-singlet pion operator
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combined fit of Wilson and
Clover data
4 lattice spacings at fixed m2

π

chiral extrapolation m→ 0

• linear: 〈x〉MS = 0.263(14)

• non-linear: 〈x〉MS = 0.221+10+21
− 9−13

⇒ no data in interesting region of pion mass
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Why are we not able to reach realistic pion mass?

in addition to
natural slowing down as mπ → 0
• very small eigenvalues
• slow down algorithms
• spoil signal

→ problem appears for Wilson fermions

→ similar (maybe worse) for O(a)-improved Wilson fermions

(staggered fermions: size of systematic error)
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solution: Ginsparg-Wilson relation

γ5D +Dγ5 = 2aDγ5D

⇒ D−1γ5 + γ5D
−1 = 2aγ5

D−1 anti-commutes with γ5 at all non-zero distances

→ only mild (i.e. local) violation of chiral symmetry

Ginsparg and Wilson arrived at this expression already
in the early days of lattice gauge theories from a completely different path
⇐ block spinning from the continuum

one solution of GW relation: overlap operator Dov (Neuberger)

(alternatives: domain wall fermions and perfect actions)

Dov =
[
1−A(A†A)−1/2

]
with A = 1 + s−Dw(mq = 0); s a tunable parameter, 0 < s < 1
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Adding a mass term (naive definition)

Dov = mq +
[
1−A(A†A)−1/2

]
→ exact (lattice) chiral symmetry at mq = 0

→ infrared safe: quark mass mq

⇐ can reach very small quark masses

→ O(a)-improved

← computationally very demanding,

O(10-100) more expensive than standard Wilson fermions

Nevertheless: exist problems for overlap fermions: ε-regime of chiral perturbation
theory, complicated operator mixings
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Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

equivalent Wilson-Dirac operator

DW = mqe
iωγ5τ3

+ γµ

2

[
∇µ +∇∗

µ

]
− ar

2∇
∗
µ∇µ +Mcr ≡ mqe

iωγ5τ3
+Dcrit +Dr

ω = 0→ usual Wilson-Dirac operator

ω = π/2 → iγ5τ3mq : twisted mass term at zero quark mass

under parity, R5 = eiωγ5τ3

• Dcrit invariant

• mqe
iωγ5τ3 → −mqe

iωγ5τ3

• Dr → −Dr

⇒ DW invariant under R5 × (r → −r)× (mq → −mq)
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Wilson twisted mass QCD

it can be shown than

〈O〉|(mq,r) = (−1)P 〈O〉|(−mq,−r)

• action invariant under R5

• change of integration measure compensated by the parity transformation of
operator
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Wilson twisted mass QCD

Symanzik expansion

〈O〉|(mq,r) = [ξ(r) + amqη(r)] 〈O〉|cont
mq

+ aχ(r) 〈O′〉|cont
mq

〈O〉|(−mq,−r) = [ξ(−r)− amqη(−r)] 〈O〉|cont
mq

+ aχ(−r) 〈O′〉|cont
−mq

in addition

〈O〉|cont
mq

= (−1)P 〈O〉|cont
−mq

⇒ ξ(r) = +ξ(−r) , amqη(r) = −amqη(−r) , aχ(r) = −aχ(−r)

⇒ 1
2

[
〈O〉|mq,r + 〈O〉|−mq,−r

]
= ξ(r) 〈O〉|cont

mq
+O(a2)

⇒ at mq = m0 −Mcr = 0 the Wilson average is O(a) improved
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Wilson twisted mass QCD

〈O〉|mq,r,ω=π/2 = 1
2

[
〈O〉|mq,r,ω=π/2 + 〈O〉|mq,−r,ω=π/2

]
⇒ choose ω = ±π/2 and bare quark mass the critical quark mass

⇒ all quantities even in ω = ±π/2 are automatic O(a) improved

Examples:

• hadron masses

• matrix elements

• form factors

• decay constants
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Hopping paramter representation

χ→
√

2κ
a3/2χ, χ̄→

√
2κ

a3/2 χ̄, κ = 1
2am0+8r

S[χ, χ, U ] =
∑

x

{
χ(x)

(
1 + 2iaµκγ5τ3

)
χ(x)

− κχ(x)
4∑

µ=1

(
U(x, µ)(r + γµ)χ(x+ aµ̂)

+ U†(x− aµ̂, µ)(r − γµ)χ(x− aµ̂)
)}

→ maximal twist: κ→ κcrit

Frezzotti, Rossi: κcrit to be known to O(a)

we take κcrit from pion mass intercept

Aoki, Bär criticism → talk by S. Aoki

→ talk by A. Shindler
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Field rotations and bilinears

field rotations

ψ(x) ≡ ei
ω
2γ5τ3χ(x) =

(
cos ω

2 + iγ5τ3 sin ω
2

)
χ(x)

ψ(x) ≡ χ(x)ei
ω
2γ5τ3 = χ(x)

(
cos ω

2 + iγ5τ3 sin ω
2

)
bilinears example: axial and vector currents
“physical basis” (unprimed quantities)
“twisted basis” (primed quantities)

A′α
µ = cos(ω)Aα

µ + ε3αβ sin(ω)V β
µ (α = 1, 2)

= A3
µ(α = 3)

V ′α
µ = cos(ω)V α

µ + ε3αβ sin(ω)Aβ
µ(α = 1, 2)

= V 3
µ (α = 3)
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Scaling test at heavy mass
K.J., A. Shindler, C. Urbach, I. Wetzorke

Dcrit (κcrit) determined with
pure Wilson fermions
correlation function

fα
P (t) =

∑
~x〈Pα(x)Pα(0)〉

r0mπ = 1.79 ≈ 750MeV

open circles: twisted mass
open squares: standard Wilson
filled symbols: O(a) improved Wilson
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Pion decay constant

definition of FPS: 〈0|A1
0|PS〉 = mPSFPS

twisted basis, at ω = π/2, the axial current is related to the vector current

∂µ〈0|V 2
µ |PS〉 = FPSm

2
PS .

vector ward identity implies ZP = Z−1
µ

FPSm
2
PS = ∂µ〈0|V 2

µ |PS〉 = 2µq〈0|P 1|PS〉

For asymptotic Euclidean times, the pseudoscalar correlation function f1
P assumes

the form

f1
P (t) = |〈0|P 1|PS〉|2

2mPS
·
(
e−mPSt + e−mPS(T−t)

)
, a� t� T .

fitting the pseudo scalar correlation function for large time separation, obtain the
pseudoscalar mass and
|〈0|P 1|PS〉|2/mPS

from which we get |〈0|P 1|PS〉|.
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Pion decay constant

scaling result and comparison to O(a) improved Wilson fermions

open symbols: twisted mass

filled symbols: O(a) improved Wilson
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twisted mass against overlap fermions: pion mass
W. Bietenholz, T. Chiarappa, M. Hasenbusch, K.J., K. Nagai, M. Papinutto,

L. Scorzato, S. Shcheredin, A. Shindler, C. Urbach, U. Wenger, I. Wetzorke

here: only one β = 5.85
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⇒ twisted mass simulations can reach quarks masses as small as overlap
substantially smaller than O(a)-improved Wilson fermions
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twisted mass against overlap fermions: pseudoscalar decay constant
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⇒ competition of Wilson term and twisted mass term

mqΛ−1
QCD � a2Λ2

QCD

⇒ check continuum limit
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PCAC quark masses

mov
PCAC =

P
x〈∂0Aa

0(x) P a(0)〉P
x〈P a(x)P a(0)〉 , mtm

PCAC = ε3ab P
x〈∂0V b

0 (x) P a(0)〉P
x〈P a(x)P a(0)〉 a = 1, 2
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ma,µa

0

0.06

0.12

0.18

0.24

0.3
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a 
m
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C

overlap
0.00009(5)
twisted mass
-0.00008(2)

⇒ perfectly linear behaviour (?)
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Renormalization constants

compute mPCAC/mbare
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twisted mass against overlap fermions: mρ and baryon masses
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• for too small (mπa):

– signal noisy
– difficult to extract ground state
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Cost comparison
T. Chiarappa, K.J., K. Nagai, M. Papinutto, L. Scorzato,

A. Shindler, C. Urbach, U. Wenger, I. Wetzorke

• testing different solvers
CG, MR, CGS, GMRES, SUMR

• testing pion masses mπ = 720MeV, mπ = 390MeV and mπ = 250Mev
also one larger mass

• lattices 124, 164

• variety of algorithmic improvements
– adaptive precision
– chiral projection
– eigenvalue deflation
– multiple mass solver

• missing: preconditioning (running)

• tested also eigenvalue computation
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Best algorithm for overlap fermions

10.0(3)

t/tGMRESap
t/tGMRESap
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Best algorithm for twisted mass fermions

t/tCGSt/tCGS

124, µ = 0.0125124, µ = 0.042
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Timings as function of quark mass
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Cost comparison

V,mπ Overlap TM rel. factor
124, 720Mev 48.8(6) 2.6(1) 18.8
124, 390Mev 142(2) 4.0(1) 35.4
164, 720Mev 225(2) 9.0(2) 25.0
164, 390Mev 653(6) 17.5(6) 37.3
164, 250Mev 1949(22) 22.1(8) 88.6

Best absolute timings in seconds on one node of JUelich MultiProzessor (JUMP)
IBM p690 Regatta in Juelich

find: Wilson twisted mass fermions are 20-80 cheaper than overlap fermions
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Conclusion

F overlap and Wilson twisted mass fermions

→ O(a)-improved

→ safe against exceptionally small eigenvalues
⇒ allow for simulations at small quark masses

– pion mass as small as 230 MeV
– twisted mass: unexpected behaviour of, e.g., fπ at very small quark mass

⇒ conceptual versus practical advantages
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