Lattice QCD

with

Dynamical Domain Wall Fermions

Taku Izubuchi

Kanazawa University
for the Riken-BNL-Columbia collaboration

Introduction

Advantages of Domain Wall Fermions (DWF) (Kaplan 92, Shamir 93, Furman-Shamir 95)

- Both chiral and flavor symmetry are realized at finite lattice spacings, a, in a good approximation.
- Small $O(a)$ discretization errors : $O\left(a m_{r e s}\right)$ and $O\left(a^{2} m_{f}^{2}\right)$. (c.f. J. Noaki's talk for quenched simulations.)
- Simple, Continuum-like PQChPT (partially quenched chiral perturbation theory) formulae are presumably applicable for chiral extrapolations on finite lattice spacings.
- No unphysical operator mixing in flavor space, and a very small mixing with wrong chirality operators.
- Positive determinant for positive quark mass (Furman-Shamir) .
$\Longrightarrow \operatorname{det} D=\sqrt{|\operatorname{det} D|^{2}}$ for odd flavor(s).
DWF is one implementation of Ginsparg-Wilson fermions, which would be the closest lattice fermions to the continuum one.

Plan of this talk

- Introduction
- HMC Evolution Details
- Physical Results
- Conclusion

HMC Evolution Details

As this is the first large-scale study of $N_{F}=2$ Dynamical DWF, somewhat detailed description about the ensemble generation may be worth reporting.

To compensate a part of the expense adding the fifth dimension needed for flavor-chiral symmetry, several improvements are made on top of the simulations done by Columbia Univ. (G. Fleming, P. Vranas, et.al.) .

- RG improved gauge actions
- Improved fermion force term
- Chronological inverter

The residual chiral symmetry breaking

- From five dimensional Wilson fermion, $\psi(x, s)$, with Wilson mass $-M_{5}\left(M_{5}\right.$: DWF height),
the 4 -dim quark is picked up from left (right) chirality part at boundaries:

$$
\begin{aligned}
q(x) & =P_{L} \psi(x, 1)+P_{R} \psi\left(x, L_{s}\right) \\
\bar{q}(x) & =\bar{\psi}\left(x, L_{s}\right) P_{R}+\bar{\psi}(x, 1) P_{L} \\
& \text { mass term }: m_{f} \bar{q} q(x)
\end{aligned}
$$

- From the axial Ward-Takahashi identity,

$$
\begin{array}{rll}
\partial_{\mu} \mathcal{A}_{\mu}^{a}(x) & =2 m_{f} J_{5}^{a}(x)+2 J_{5 q}^{a}(x) & J_{5}^{a}(x) \stackrel{\text { mf }}{:} \text { non-singlet pseudoscalar, } \\
& \approx 2 \quad\left(m_{5 q}^{a}(x):\right. \text { explicit breaking term } \\
& \text { consists of field at } s=L_{s} / 2- \\
\text { res }) J_{5}^{a}(x) & 1, L_{s} .
\end{array}
$$

with the measure of the residual chiral symmetry breaking,

$$
m_{r e s}=\frac{\sum_{x, y}\left\langle J_{5 q}^{a}(y, t) J_{5}^{a}(x, 0)\right\rangle}{\sum_{x, y}\left\langle J_{5}^{a}(y, t) J_{5}^{a}(x, 0)\right\rangle}
$$

$m_{\text {res }}$ in quenched simulations

- In practice $L_{s} \lesssim$ a few 10 is preferable. At the same time $a m_{\text {res }}$ must be small, less than a few MeV , to realize the advantages of DWF.
- quenched DWF QCD (RBC)

```
Wilson gauge action , a-1}\lesssim2 GeV
RG improved gauge actions (DBW2, Iwasaki, Symanzik),
a
```

$$
\text { for } a^{-1} \approx 2 \mathrm{GeV}, \text { and } L_{s}=16
$$

action	$m_{\text {res }}$	$a m_{\text {res }}$
Wilson	3 MeV	
Iwasaki	0.3 MeV	
DBW2	0.04 MeV	$1.9(1) \times 10^{-5}$

- RG actions reduce $m_{\text {res }}$

- In RG actions, the negative coefficients to the rectangular plaquette suppress dislocations, but the parity broken phase, still exists for small enough β (S. Aoki)

Anticipation of $m_{r e s}$ in the $N_{F}>0$ simulations

- To keep the scale obtained from the long-distant physics same, β for the dynamical simulation must be decreased from that of the quenched.
- The gauge field at the short-distance is as rough as that of quenched simulation with same (small) β. (consistent with observations using Schwinger-Dynson technique (C. Dawson))
- $m_{\text {res }}$ should be larger than that of quenched simulation.
- In fact,

$$
\begin{aligned}
& N_{f}=2 \text { Wilson plaquette action, } a^{-1} \lesssim 1 \mathrm{GeV} \\
& \Longrightarrow \text { needs } L_{s} \sim 100 \text { for small } m_{\text {res }} .
\end{aligned}
$$

- Aiming for $a^{-1} \approx 2 \mathrm{GeV}$, we set

$$
\text { DBW2 gauge action with } \beta=0.80
$$

by preparatory studies on small lattices, and extrapolations from quenched results. c.f. quenched DBW2 from m_{ρ},

$$
\begin{aligned}
& \beta=1.04: a^{-1} \approx 2 \mathrm{GeV} . \\
& \beta=0.87: a^{-1} \approx 1.3 \mathrm{GeV} .
\end{aligned}
$$

Simulation parameters

- Lattice size : $16^{3} \times 32$
- RG improved gauge actions (DBW2)
- $\beta=0.80$
- $N_{F}=2$ degenerate Dynamical Domain Wall Fermions
- A practical size of the fifth dimension ($L_{s}=12, M_{5}=1.8$)
- Three dynamical masses: $m_{\text {sea }}=0.02,0.03,0.04$
- HMC- Φ algorithm.
- The conjugate momentum is refreshed every ≈ 0.5 molecular dynamics (MD) time.
- statistics: ~ 5,000 trajectories

$m_{\text {sea }}$	Δt	Steps/Traj.	Traj.	Acceptance
0.02	$1 / 100$	51	5361	77%
0.03	$1 / 100$	51	6195	78%
0.04	$1 / 80$	41	5605	68%

Acceptance

- Acceptance, $\left\langle P_{a c c}\right\rangle$, is related to $\Delta H=H_{f}-H_{i}$ (the energy difference between the first and the last configuration in a trajectory due to the finite step size in MD, $\Delta t>0):$

$$
\left\langle P_{a c c}\right\rangle=\operatorname{erfc}(\sqrt{\langle\Delta H\rangle} / 2) \approx \operatorname{erfc}\left(\sqrt{\left\langle(\Delta H)^{2}\right\rangle / 8}\right)
$$

- Scaling ansatz (Gupta et.al. 90, Takaishi 01) (2nd order integrator):

$$
\left\langle(\Delta H)^{2}\right\rangle=C_{\Delta H}^{2} V(\Delta t)^{4} .
$$

- By measuring $\left\langle(\Delta H)^{2}\right\rangle \quad$ (preliminary: standard deviation error)

$m_{\text {sea }}$	Δt	Steps/Trajectory	$\left\langle P_{\text {acc }}\right\rangle$	$C_{\Delta H}$
0.02	$1 / 100$	51	77%	$16.2(2)$
0.03	$1 / 100$	51	78%	$15.8(1)$
0.04	$1 / 80$	41	68%	$16.4(2)$

- The scaled acceptance, $C_{\Delta H}$, is insensitive to $m_{\text {sea }}$ in current parameters, while $C_{\Delta H} \propto m_{\text {sea }}^{-\alpha}, \alpha \sim 2$ would be an empirical estimation.
- Note These are results for relatively heavy dynamical masses ($m_{\pi} / m_{\rho} \sim$ $0.55-0.65$). $\underline{C}_{\Delta H}$ would likely increase for lighter quark mass.

Improved Force Term

(Vranas, Dawson)

- DWF needs Pauli-Villars field of $m_{f}=1$ to cancel off the divergence of the bulk (5-dim) fermions.

$$
\Phi_{P V}{ }^{\dagger}\left[D^{\dagger} D\left(m_{f}=1\right)\right] \Phi_{P V}
$$

- Previous works used pseudo fermion field, Φ_{F}, and $\Phi_{P V}$ separately: cancellation was done stochastically \Longrightarrow larger force due to the "mismatch" between $\Phi_{P V}$ and Φ_{F} in a trajectory.
- Improved method uses one pseudo fermion field for both fermion and Pauli-Villars:

$$
\begin{aligned}
\frac{\operatorname{det}\left[D^{\dagger}\left(m_{f}\right) D\left(m_{f}\right)\right]}{\operatorname{det}\left[D^{\dagger}(1) D(1)\right]} & =\operatorname{det}\left[D^{\dagger}\left(m_{f}\right) \frac{1}{D(1)} \frac{1}{D^{\dagger}(1)} D\left(m_{f}\right)\right] \\
& =\int\left[d \Phi^{\prime}\right]\left[d \Phi^{\prime \dagger}\right] e^{-S_{\text {new }}} \\
S_{\text {new }} & =\sum_{x} \Phi^{\prime \dagger} D(1) \frac{1}{D\left(m_{f}\right)} \frac{1}{D^{\dagger}\left(m_{f}\right)} D^{\dagger}(1) \Phi^{\prime}
\end{aligned}
$$

- Switching to $S_{\text {new }}$, acceptance increases from 56% to 77%, while $C_{\Delta H}$ decreases from 39(4) to 16.2(2) for $m_{\text {sea }}=0.02$.

Chronological Inverter

(Brower, Ivanenko, Levi, Orginos)
In each MD step, we need to solve: $M\left[U_{\mu}\right] \chi=b$.

Forecast solution using past solutions

- Orthogonal basis from previous N_{p} solutions of CG, (2 Gram-Schmidtś)

$$
\left\{v_{n}\right\}_{n=1 \cdots N_{p}}, \quad v_{1} \propto(\text { latest vector })
$$

residual vs CG iterations $16 \times 16 \times 16 \times 32$, beta $=0.80$, HMC_2, conf \#170

- overhead: $1 \sim 2 \times N_{p}^{2}$ CG count.

Chronological Inverter..

- $N_{C G}^{(i)}$: average number of matrix multiplication in CG using previous i solution vectors in the forecasting.
$N_{C G}^{(t o t)}$: average total number of multiplication in a trajectory.
- $N^{(i)}$ stop decreasing for $i \gtrsim 7$ for the parameters we use.

$m_{\text {sea }}$	Δt	Steps/Traj.	$N_{C G}^{(0)}$	$N_{C G}^{(7)}$	$N_{C G}^{(t o t)}$
0.02	$1 / 100$	51	715	277	16,014
0.03	$1 / 100$	51	514	158	9,214
0.04	$1 / 80$	41	402	121	5,964

- From simple power fits for the three points,

$$
N_{C G}^{(i)}=C_{i}\left(m_{\text {sea }}+m_{\text {res }}\right)^{-\beta_{i}}
$$

$\beta_{0} \approx 1, \beta_{7} \approx 1.5, \beta_{t o t} \approx 1.5$

- Note these numbers would be susceptible to the particular run parame-
 ters, especially to Δt.

Autocorrelation

$\rho^{(\mathcal{O})}(t)=\frac{\langle(\mathcal{O}(t)-\langle\mathcal{O}\rangle)(\mathcal{O}(0)-\langle\mathcal{O}\rangle)\rangle}{\left\langle(\mathcal{O}-\langle\mathcal{O}\rangle)^{2}\right\rangle}$
$\tau_{\text {int }}^{(\mathcal{O})}\left(t_{\text {max }}\right)=\frac{1}{2}+\sum_{t=1}^{t_{\text {max }}} \rho^{(\mathcal{O})}(t)$

- 1×1 plaquette from ~ 5000 trajectories: $\tau_{\text {int }} \lesssim 10$, independent of $m_{\text {sea }}$ within jackknife error.
- Smeared Wilson loops, $\langle W(r, t)\rangle$, from every $5\left(m_{\text {sea }}=0.02\right)$ and 10 ($m_{\text {sea }}=0.03,0.04$) trajectories. APE smear for spacial link.
- Axial-Axial, box-point correlator at time-slice 12, from every 10 trajectories, Coulomb gauge fixed box source of size $10, m_{\text {sea }}=0.02: \tau_{\text {int }} \approx 40$.
- topological charge. $O\left(a^{2}\right)$ improved
 definition from clover leafs for 1×1 and 1×2. plaquette.

Summary of the Configuration Generation

- Improved force term increases acceptance.
- The scaled acceptance, $C_{\Delta H}$, is constant in current sea quark mass region.
- The multiple gauge steps (Sexton, Weingarten) would improve performance further.
- Chronological inverter reduces CG count.
- More serious parameter tuning is worth examining in future simulations.

$m_{\text {sea }}$	Steps/Traj.	Traj.	$C_{\Delta H}$	$C G^{(t o t)}$	day / 1,000 Traj. (machine)
0.02	51	5361	$16.2(2)$	16,014	27.3 days (64MB~200GFLOPS)
0.03	51	6195	$15.8(1)$	9,214	36.6 days (32MB~100GFLOPS)
0.04	41	5605	$16.4(2)$	5,964	29.7 days (32MB~100GFLOPS)

- Same β, volume but half sea quark mass, $m_{\text {sea }}=0.01\left(m_{\pi} / m_{\rho} \sim 0.4\right)$, needs roughly 3 months/1,000 Traj. on 64MB (200GFLOPS) QCDSP if acceptance stays same.

Static Quark Potential

- The static quark potential is extracted from Wilson loop, $W(\vec{r}, t)$, using APE smear:

$$
W(\vec{r}, t)=W(\vec{r}, 0) C(\vec{r}) e^{-V(r) t}
$$

The smear parameters are tuned to maximize $C(\vec{r}):(c, n)=(0.5,20)$. For arbitrary \vec{r}, all shortest paths are accumulated to increase the number of data points (Bolder et.al.).

- 941, 559, 473 configurations for $m_{\text {sea }}=0.02,0.03,0.04$. Statistical error by the jackknife estimation for block-average over 50 trajectories.
- $V(r)$ has plateau at $t \in[4,6]$.
- $V(r)$ extracted at $[t, t+1]$ approaches to plateau from below for small $r . C(r)>1$. (Necco)
- $C(r)$ decreases at large r only in dynamical configuration as seen in other dynamical simulations (UKQCD, CPPACS, SESAM and $T \chi L \ldots$...

Static Quark Potential ...

$$
m_{\text {sea }}=0.02, t \in[5,6]
$$

Static Quark Potential

analysis: four methods to examine systematic error

- $l=0$ (our main method)

$$
\begin{aligned}
& V(\vec{r})=V_{0}+\frac{\alpha}{r}+\sigma r+l\left[\frac{1}{\vec{r}}\right]_{L} \\
& \text { Sommer scale : } r_{0}=\sqrt{\frac{1.65-\alpha}{\sigma}}
\end{aligned}
$$

- $l \neq 0, L=\infty$
- $l \neq 0, L=16$
- Interpolation of (three dimensional) force :

$$
\left|r^{2} \nabla V\left(r_{0}\right)\right|=1.65
$$

- $V(r)$ extracted $t \in[5,6]$, then fitted $r \in[\sqrt{3}, 8]$,
- All methods give same r_{0} within current statistica error except $l \neq 0, L=16$ for $m_{\text {sea }}=0.02$.
- Assuming $r_{0}=0.5 \mathrm{fm}$,

$$
\begin{aligned}
& \left.r_{0}\right|_{m_{\text {sea }} \rightarrow-m_{\text {res }}}=4.278(54)\binom{+174}{-011} \\
& a_{r_{0}}^{-1}=1.688(21)\binom{+69}{-04} \mathrm{GeV}
\end{aligned}
$$

- $9(4) \%$ smaller $m_{\rho} r_{0}$ than quenched $\beta=1.04$

Hadron spectrum and decay constants

- chiral limit: $m_{f}=-m_{\text {res }}$
- Hadron made of degenerate valence quarks (except B_{K}).
- Coulomb gauge fixed wall source point sink for hadron masses, and non-gaugefixed wall-point (Kuramashi wall) for decay constant.
- 94 configurations from every 50 trajectories for each $m_{\text {sea }}$ leaving first ~ 600 configurations for thermalization.
- Chiral extrapolation:
- observables in lattice unit are extrapolated.
- Linear functions of $m_{\text {sea }}, m_{\text {val }}$.
- The next-to leading order partially quenched chiral perturbation theory formulae (NLO).

- Wall-point correlator,

$$
R(t)=\frac{\left\langle J_{5 q}(t) J_{5}(0)\right\rangle}{\left\langle J_{5}(t) J_{5}(0)\right\rangle}
$$

- constant fit at $t \in[4,16]$.
- The quark mass dependence is very weak.
- Chiral limit is defined as

$$
m_{f}=\left.m_{r e s}\right|_{m \rightarrow 0}=0.001372(44)
$$

- Larger than quenched DBW2 $(\beta=1.04)$ value for same $L_{s}=12$.
- An order of magnitude smaller than input quark mass, under control.

Pseudoscalar decay constant

- un-gauge-fixed wall source point sink pseudoscalar correlator $\left\langle J_{5} J_{5}\right\rangle$.

$$
\begin{aligned}
\langle 0| J_{5}|P S\rangle & =f_{P S} \frac{M_{P S}^{2}}{2\left(m_{v a l}+m_{r e s}\right)} \\
\langle 0| A_{4}|P S\rangle & =f_{P S}^{l a t} M_{P S}=\frac{f_{P S}}{Z_{A}} M_{P S}
\end{aligned}
$$

- $\left\langle A_{4} A_{4}\right\rangle$ has larger statistical error for mass, but consistent with $\left\langle J_{5}^{a}, J_{5}^{a}\right\rangle$.
- linear fit for $m_{v a l}, m_{\text {sea }} \in[0.01,0.04]$:

$$
f_{P S}=f+c_{1} \frac{m_{1}+m_{2}}{2}+c_{2} m_{s e a}
$$

$$
f=0.0781(14)
$$

Pseudoscalar decay constant...

- NLO fits are also examined.
- $m_{\text {val }}, m_{\text {sea }} \in[0.01,0.03]$
- 30% smaller f than linear fit.
- Larger mass points are missed badly.

vector meson mass

- Wall-point correlator.
- Relatively poor plateau.
- $t \in\left[t_{\text {min }}, 16\right], t_{\text {min }}=5,6,7$ for $m_{\text {sea }}=$ $0.02,0.03,0.04$.
- From m_{π} / m_{ρ} by a linear fit + NLO fit for $m_{p s}$,

$$
a^{-1}=1.690(53) \mathrm{GeV}
$$

$$
\left(\text { c.f. } a_{r_{0}}^{-1}=1.688(21)\binom{+69}{-04} .\right)
$$

- At dynamical points:

$$
\begin{aligned}
& m_{p s} / m_{v}=0.536(7), 0.600(6), 0.647(6) \\
& \text { or } \\
& m_{p s} \approx \frac{1}{2}, \frac{3}{4}, 1 \times m_{\text {strange }}
\end{aligned}
$$

pseudoscalar meson mass

- Wall-point correlator $\left\langle A_{4} A_{4}\right\rangle$ and $\left\langle J_{5} J_{5}\right\rangle$.
- Smaller statistical error for $\left\langle A_{4} A_{4}\right\rangle$. Masses are extracted from $t \in[9,16]$.
- A linear extrapolation $m_{p s}^{2}$ to $m_{f}=$ $-m_{\text {res }}$ is zero. $m_{p s}^{2}=0$ at $m_{f} \approx$ $-(2-3) \times m_{\text {res }}$ in quenched simulation. \longrightarrow Consistent with (quenched) chiral logarithms ($\left.m_{p s}^{2} / m \sim 2 B_{0}+c m \log m\right)$ vs $\left(m_{p s}^{2} / m \sim \log m\right)$.
- NLO fit for $m_{\text {sea,val }} \in[0.01,0.04]$ is not inconsistent.

Pseudoscalar Meson mass

Fit using $\mathrm{m}_{\text {sea,val }} \leq 0.03$ only

- NLO fit using $m_{\text {sea,val }} \leq 0.03$
- constraints:
- $m_{p s}^{2}=0$ at $m_{v a l, s e a}=-m_{r e s}$,
- $f=0.0781$ from linear fit of $f_{p s}$.
- From neutral pion mass

$$
\bar{m}=2.4(15) \times 10^{-4}
$$

- Using NLO for non-degenerate valence quark with same low energy constants
: $\quad m_{\text {strange }}=0.0447(25)$
- renormalized quark mass :

$$
\begin{aligned}
& m^{\bar{M} S}=\left(m+m_{r e s}\right) / Z_{s} \\
& Z_{s} \sim 0.6 \quad \text { (Dawson Lattice2003) } .
\end{aligned}
$$

Other Physical Results (preliminary)

- NLO fits results using $m_{p s}^{2}$ at $m_{f}=m_{\text {sea,val }} \leq m_{f}^{(\max)}$. Pseudo-scalar wall-point (upper two column), and axial-vector wall point. uncorrelated χ^{2}. GasserLeutwyler low energy constants L_{i} multiplied by 10^{4} at $\Lambda_{\chi}=1 \mathrm{GeV}$.

$m_{f}^{(\max)}$	$\chi^{2} /$ dof	$2 B_{0}$	$L_{4}-2 L_{6}$	$L_{5}-2 L_{8}$
0.03	$0.1(1)$	$4.0(3)$	$-1.5(7)$	$-2(1)$
0.04	$2(1)$	$4.2(1)$	$-0.2(4)$	$-1.1(4)$
0.03	$0.3(2)$	$4.0(3)$	$-1.9(8)$	$-1(1)$
0.04	$1.9(9)$	$4.2(1)$	$-0.4(4)$	$-0.8(3)$

- By linear extrapolations/interpolations for $f_{p s}$ to \bar{m} and m_{s},

	$N_{F}=2$	experiment	$N_{F}=0$
f_{π}	$134(4)$	130.7	$129.0(50)$
f_{K}	$157(4)$	160	$149.7(36)$
f_{K} / f_{π}	$1.18(1)$	1.224	$1.118(25)$

better agreement with experiment than quenched DWF simulations.

Other Physical Results (preliminary)...

-

$$
J=m_{V} \frac{d m_{p s}^{2}}{d m_{V}}
$$

$m_{\text {sea }}$	$-m_{\text {res }}$	0.02	0.03	0.04	quenched $\beta=1.04$
J	$0.461(61)$	$0.408(19)$	$0.393(25)$	$0.349(50)$	$0.387(16)$

closer value to the phenomenological estimation 0.48(2).

- Baryon mass :

$$
\frac{m_{N}}{m_{\rho}}=1.34(4)
$$

larger than experimental value, and consistent with quenched results for $m_{\text {sea,val }} \in[0.02,0.04]$. The sea quark effect is hardly seen in current statistics.

conclusion

- We have generated ensembles of Lattice QCD with $N_{F}=2$ dynamical DWF
- three $m_{\text {sea }}$: 0.02, 0.03, 0.04
corresponding to $\quad m_{p s} / m_{V}=0.54(1), 0.60(1), 0.65(1)$ or $m_{p s} \approx \frac{1}{2}, \frac{3}{4}, 1 \times m_{\text {strange }}$,
-Statistics: $\sim 5,000$ trajectories ,
-Lattice spacing: $a^{-1}=1.690(53) \mathrm{GeV}$,
- Volume: $V \approx(1.9 \mathrm{fm})^{3}$,
- $m_{\text {res }}=0.001372(44) \lesssim 5 \mathrm{MeV}$
- The NLO fit to $m_{p s}^{2}$ is not inconsistent.
- NLO formula did not describe the data of $f_{p s}$.
- Comparing to $N_{F}=0$ DWF, closer agreements with experimental value are found.

Exploratory results of $N_{F}=3$

- $16^{3} \times 32$, DBW2, $\beta=0.72, m_{\text {sea }}=0.04, L_{s}=81,500$ trajectories generaged using $\operatorname{HMC}-\mathrm{R}(\Delta t=0.01)$
$\Longrightarrow m_{\text {res }}=0.017(1), a^{-1} \approx 1.6-1.7 \mathrm{GeV}$ at chiral limit using m_{V}, r_{0}.
- $m_{\text {res }}$ as a function of valence L_{s} (M. Lin, Mawhinney)
$m_{\text {res }}$ versus L_{s} for $N_{f}=0,2$ and 3

- RHMC is implemented in CPS (Clark) .

