Lattice QCD

with

Dynamical Domain Wall Fermions

Taku Izubuchi

Kanazawa University

for the Riken-BNL-Columbia collaboration

Introduction

Advantages of Domain Wall Fermions (DWF) (Kaplan 92, Shamir 93, Furman-Shamir 95)

- Both chiral and flavor symmetry are realized at finite lattice spacings, *a*, in a good approximation.
- Small O(a) discretization errors : $O(am_{res})$ and $O(a^2m_f^2)$. (*c.f.* J. Noaki's talk for quenched simulations.)
- Simple, Continuum-like PQChPT (partially quenched chiral perturbation theory) formulae are presumably applicable for chiral extrapolations on finite lattice spacings.
- No unphysical operator mixing in flavor space, and a very small mixing with wrong chirality operators.
- Positive determinant for positive quark mass (Furman-Shamir) . $\implies \det D = \sqrt{|\det D|^2}$ for odd flavor(s).

DWF is one implementation of Ginsparg-Wilson fermions, which would be the closest lattice fermions to the continuum one.

Plan of this talk

- Introduction
- HMC Evolution Details
- Physical Results
- Conclusion

HMC Evolution Details

As this is the first large-scale study of $N_F = 2$ Dynamical DWF, somewhat detailed description about the ensemble generation may be worth reporting.

To compensate a part of the expense adding the fifth dimension needed for flavor-chiral symmetry, several improvements are made on top of the simulations done by Columbia Univ. (G. Fleming, P. Vranas, *et. al.*).

- RG improved gauge actions
- Improved fermion force term
- Chronological inverter

The residual chiral symmetry breaking

• From five dimensional Wilson fermion, $\psi(x,s)$, with Wilson mass $-M_5$ (M_5 : DWF height),

the 4-dim quark is picked up from left (right) chirality part at boundaries:

with the measure of the residual chiral symmetry breaking,

$$m_{res} = \frac{\sum_{x,y} \left\langle J_{5q}^{a}(y,t) J_{5}^{a}(x,0) \right\rangle}{\sum_{x,y} \left\langle J_{5}^{a}(y,t) J_{5}^{a}(x,0) \right\rangle}$$

m_{res} in quenched simulations

- In practice $L_s \leq a$ few 10 is preferable. At the same time am_{res} must be small, less than a few MeV, to realize the advantages of DWF.
- quenched DWF QCD (RBC)

```
Wilson gauge action , a^{-1} \leq 2 GeV
RG improved gauge actions (DBW2, Iwasaki, Symanzik),
a^{-1} \simeq 1.3, 2, and 3 GeV.
```


• In RG actions, the negative coefficients to the rectangular plaquette suppress dislocations, but the parity broken phase, still exists for small enough β (S. Aoki)

Anticipation of m_{res} in the $N_F > 0$ simulations

- To keep the scale obtained from the long-distant physics same, β for the dynamical simulation must be decreased from that of the quenched.
- The gauge field at the short-distance is as rough as that of quenched simulation with same (small) β . (consistent with observations using Schwinger-Dynson technique (C. Dawson))
- m_{res} should be larger than that of quenched simulation.
- In fact,

 $N_f = 2$ Wilson plaquette action, $a^{-1} \leq 1$ GeV \implies needs $L_s \sim 100$ for small m_{res} .

• Aiming for $a^{-1} \approx 2$ GeV, we set

DBW2 gauge action with $\beta = 0.80$

by preparatory studies on small lattices, and extrapolations from quenched results. c.f. quenched DBW2 from m_{ρ} ,

$$eta = 1.04 : a^{-1} pprox 2 GeV . \ eta = 0.87 : a^{-1} pprox 1.3 GeV .$$

Simulation parameters

- Lattice size : $16^3 \times 32$
- RG improved gauge actions (DBW2)
- $\beta = 0.80$
- N_F =2 degenerate Dynamical Domain Wall Fermions
- A practical size of the fifth dimension ($L_s = 12$, $M_5 = 1.8$)
- Three dynamical masses: $m_{sea} = 0.02, 0.03, 0.04$

- HMC- Φ algorithm.
- The conjugate momentum is refreshed every \approx 0.5 molecular dynamics (MD) time.

m_{sea}	Δt	Steps/Traj.	Traj.	Acceptance
0.02	1/100	51	5361	77%
0.03	1/100	51	6195	78 %
0.04	1/80	41	5605	68 %

• statistics: \sim 5,000 trajectories

Acceptance

• Acceptance, $\langle P_{acc} \rangle$, is related to $\Delta H = H_f - H_i$ (the energy difference between the first and the last configuration in a trajectory due to the finite step size in MD, $\Delta t > 0$):

$$\langle P_{acc} \rangle = \operatorname{erfc}\left(\sqrt{\langle \Delta H \rangle}/2\right) \approx \operatorname{erfc}\left(\sqrt{\langle (\Delta H)^2 \rangle/8}\right)$$

• Scaling ansatz (Gupta et.al. 90, Takaishi 01) (2nd order integrator):

$$\left\langle \left(\Delta H\right)^2 \right\rangle = C_{\Delta H}^2 V (\Delta t)^4.$$

• By measuring $\left< (\Delta H)^2 \right>$ (preliminary: standard deviation error)

m_{sea}	Δt	Steps/Trajectory	$\langle P_{acc} \rangle$	$C_{\Delta H}$
0.02	1/100	51	77 %	16.2(2)
0.03	1/100	51	78 %	15.8(1)
0.04	1/80	41	68 %	16.4(2)

- The scaled acceptance, $C_{\Delta H}$, is insensitive to m_{sea} in current parameters, while $C_{\Delta H} \propto m_{sea}^{-\alpha}$, $\alpha \sim 2$ would be an empirical estimation.
- **Note** These are results for relatively heavy dynamical masses ($m_{\pi}/m_{\rho} \sim 0.55 0.65$). $C_{\Delta H}$ would likely increase for lighter quark mass.

Improved Force Term

(Vranas, Dawson)

• DWF needs Pauli-Villars field of $m_f = 1$ to cancel off the divergence of the bulk (5-dim) fermions.

$$\Phi_{PV}^{\dagger} [D^{\dagger} D(m_f = 1)] \Phi_{PV}$$

- Previous works used pseudo fermion field, Φ_F , and Φ_{PV} separately: cancellation was done stochastically \implies larger force due to the "mismatch" between Φ_{PV} and Φ_F in a trajectory.
- Improved method uses one pseudo fermion field for both fermion and Pauli-Villars:

$$\frac{\det \left[D^{\dagger}(m_{f})D(m_{f})\right]}{\det \left[D^{\dagger}(1)D(1)\right]} = \det \left[D^{\dagger}(m_{f})\frac{1}{D(1)}\frac{1}{D^{\dagger}(1)}D(m_{f})\right]$$
$$= \int [d\Phi'][d\Phi'^{\dagger}]e^{-S_{new}} ,$$
$$S_{new} = \sum_{x} \Phi'^{\dagger}D(1)\frac{1}{D(m_{f})}\frac{1}{D^{\dagger}(m_{f})}D^{\dagger}(1)\Phi'$$

• Switching to S_{new} , acceptance increases from 56% to 77%, while $C_{\Delta H}$ decreases from 39(4) to 16.2(2) for $m_{sea} = 0.02$.

Chronological Inverter

(Brower, Ivanenko, Levi, Orginos) In each MD step, we need to solve: $M[U_{\mu}]\chi = b$.

Forecast solution using past solutions

• Orthogonal basis from previous N_p solutions of CG, (2 Gram-Schmidtś)

 $\{v_n\}_{n=1\cdots N_p}, \qquad v_1 \propto$ (latest vector)

• Solve linear equation in N_p dim subspace.

$$a_n = G_{n,m}^{-1} b_n,$$

 $G_{n,m} = \langle v_n | M | v_m \rangle, \quad b_n = \langle v_n | b \rangle$

use the solution for the CG guess vector

$$\chi_{try} = \sum_{n=1,\cdots,N_p} a_n v_n$$

• overhead: $1 \sim 2 \times N_p^2$ CG count.

Chronological Inverter...

• $N_{CG}^{(i)}$: average number of matrix multiplication in CG using previous *i* solution vectors in the forecasting.

 $N_{CG}^{(tot)}$: average total number of multiplication in a trajectory.

• $N^{(i)}$ stop decreasing for $i \gtrsim 7$ for the parameters we use.

m_{sea}	Δt	Steps/Traj.	$N_{CG}^{(0)}$	$N_{CG}^{(7)}$	$N_{CG}^{(tot)}$
0.02	1/100	51	715	277	16,014
0.03	1/100	51	514	158	9,214
0.04	1/80	41	402	121	5,964

From simple power fits for the three points,

$$N_{CG}^{(i)} = C_i (m_{sea} + m_{res})^{-\beta_i}$$

 $\beta_0 \approx 1$, $\beta_7 \approx 1.5$, $\beta_{tot} \approx 1.5$

• Note these numbers would be susceptible to the particular run parameters, especially to Δt .

Autocorrelation

$$\rho^{(\mathcal{O})}(t) = \frac{\langle (\mathcal{O}(t) - \langle \mathcal{O} \rangle) (\mathcal{O}(0) - \langle \mathcal{O} \rangle) \rangle}{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle}$$

$$\tau_{int}^{(\mathcal{O})}(t_{max}) = \frac{1}{2} + \sum_{t=1}^{t_{max}} \rho^{(\mathcal{O})}(t)$$

- 1×1 plaquette from ~ 5000 trajectories: $\tau_{int} \leq 10$, independent of m_{sea} within jackknife error.
- Smeared Wilson loops, $\langle W(r,t) \rangle$, from every 5 ($m_{sea} = 0.02$) and 10 ($m_{sea} = 0.03, 0.04$) trajectories. APE smear for spacial link.
- Axial-Axial, box-point correlator at time-slice 12, from every 10 trajectories, Coulomb gauge fixed box source of size 10, $m_{sea} = 0.02$: $\tau_{int} \approx 40$.
- topological charge. $O(a^2)$ improved definition from clover leafs for 1×1 and 1×2 . plaquette.

Summary of the Configuration Generation

- Improved force term increases acceptance.
- The scaled acceptance, $C_{\Delta H}$, is constant in current sea quark mass region.
- The multiple gauge steps (Sexton, Weingarten) would improve performance further.
- Chronological inverter reduces CG count.
- More serious parameter tuning is worth examining in future simulations.

m_{sea}	Steps/Traj.	Traj.	$C_{\Delta H}$	$CG^{(tot)}$	day / 1,000 Traj. (machine)
0.02	51	5361	16.2(2)	16,014	27.3 days (64MB \sim 200GFLOPS)
0.03	51	6195	15.8(1)	9,214	36.6 days (32MB \sim 100GFLOPS)
0.04	41	5605	16.4(2)	5,964	29.7 days (32MB \sim 100GFLOPS)

• Same β , volume but half sea quark mass, $m_{sea} = 0.01$ ($m_{\pi}/m_{\rho} \sim 0.4$), needs roughly 3 months/1,000 Traj. on 64MB (200GFLOPS) QCDSP if acceptance stays same.

Static Quark Potential

• The static quark potential is extracted from Wilson loop, $W(\vec{r},t)$, using APE smear:

$$W(\vec{r},t) = W(\vec{r},0) C(\vec{r}) e^{-V(r)t}$$

The smear parameters are tuned to maximize $C(\vec{r})$: (c, n) = (0.5, 20). For arbitrary \vec{r} , all shortest paths are accumulated to increase the number of data points (Bolder *et.al.*).

- 941, 559, 473 configurations for $m_{sea} = 0.02, 0.03, 0.04$. Statistical error by the jackknife estimation for block-average over 50 trajectories.
- V(r) has plateau at $t \in [4, 6]$.
- V(r) extracted at [t, t + 1] approaches to plateau from below for small r. C(r) > 1. (Necco)
- C(r) decreases at large r only in dynamical configuration as seen in other dynamical simulations (UKQCD, CP-PACS, SESAM and T χ L ...).

Static Quark Potential ...

 $m_{sea} = 0.02, t \in [5, 6]$

Static Quark Potential ...

analysis: four methods to examine systematic error

• l = 0 (our main method)

- $V(\vec{r}) = V_0 + \frac{\alpha}{r} + \sigma r + l \left[\frac{1}{\vec{r}}\right]_L$ Sommer scale : $r_0 = \sqrt{\frac{1.65 - \alpha}{\sigma}}$
- $l \neq 0, L = \infty$
- $l \neq 0, L = 16$
- Interpolation of (three dimensional) force :

 $|r^2 \nabla V(r_0)| = 1.65$

- V(r) extracted $t \in [5, 6]$, then fitted $r \in [\sqrt{3}, 8]$.
- All methods give same r_0 within current statistica error except $l \neq 0, L = 16$ for $m_{sea} = 0.02$.
- Assuming $r_0 = 0.5$ fm,

$$egin{aligned} r_0|_{m_{sea} o -m_{res}} &= 4.278(54) \left(egin{aligned} +174 \ -011 \end{array}
ight) &, \ a_{r_0}^{-1} &= 1.688(21) \left(egin{aligned} +69 \ -04 \end{array}
ight) \, {
m GeV} &. \end{aligned}$$

• 9(4)% smaller $m_{
ho}r_0$ than quenched $\beta = 1.04$

Hadron spectrum and decay constants

- chiral limit: $m_f = -m_{res}$
- Hadron made of degenerate valence quarks (except B_K).
- Coulomb gauge fixed wall source point sink for hadron masses, and non-gaugefixed wall-point (Kuramashi wall) for decay constant.
- 94 configurations from every 50 trajectories for each m_{sea} leaving first \sim 600 configurations for thermalization.
- Chiral extrapolation:
 - observables in lattice unit are extrapolated.
 - Linear functions of m_{sea}, m_{val} .
 - The next-to leading order partially quenched chiral perturbation theory formulae (NLO).

m_{res}

• Wall-point correlator,

$$R(t) = \frac{\langle J_{5q}(t) J_5(0) \rangle}{\langle J_5(t) J_5(0) \rangle}$$

- constant fit at $t \in [4, 16]$.
- The quark mass dependence is very weak.
- Chiral limit is defined as

 $m_f = m_{res}|_{m \to 0} = 0.001372(44)$

- Larger than quenched DBW2 ($\beta = 1.04$) value for same $L_s = 12$.
- An order of magnitude smaller than input quark mass, under control.

Pseudoscalar decay constant

• un-gauge-fixed wall source point sink pseudoscalar correlator $\langle J_5 J_5 \rangle$.

$$egin{array}{rcl} \langle 0|J_5|PS
angle &=& f_{PS}\,rac{M_{PS}^2}{2(m_{val}+m_{res})}, \ \langle 0|A_4|PS
angle &=& f_{PS}^{lat}\,M_{PS}=rac{f_{PS}}{Z_A}\,M_{PS}, \end{array}$$

- $\langle A_4 A_4 \rangle$ has larger statistical error for mass, but consistent with $\langle J_5^a, J_5^a \rangle$.
- linear fit for $m_{val}, m_{sea} \in [0.01, 0.04]$:

$$f_{PS} = f + c_1 \frac{m_1 + m_2}{2} + c_2 m_{sea}$$

f = 0.0781(14)

Pseudoscalar decay constant...

- NLO fits are also examined.
- $m_{val}, m_{sea} \in [0.01, 0.03]$
- 30% smaller *f* than linear fit.
- Larger mass points are missed badly.

vector meson mass

- Wall-point correlator.
- Relatively poor plateau.
- $t \in [t_{min}, 16]$, $t_{min} = 5, 6, 7$ for $m_{sea} = 0.02, 0.03, 0.04$.
- From $m_\pi/m_
 ho$ by a linear fit + NLO fit for m_{ps} ,

$$a^{-1} = 1.690(53)$$
GeV

(c.f.
$$a_{r_0}^{-1} = 1.688(21) \begin{pmatrix} +69 \\ -04 \end{pmatrix}$$
.)

• At dynamical points: $m_{ps}/m_v = 0.536(7), 0.600(6), 0.647(6)$ or $m_{ps} \approx \frac{1}{2}, \frac{3}{4}, 1 \times m_{strange}$

pseudoscalar meson mass

- Wall-point correlator $\langle A_4 A_4 \rangle$ and $\langle J_5 J_5 \rangle$.
- Smaller statistical error for $\langle A_4 A_4 \rangle$. Masses are extracted from $t \in [9, 16]$.
- A linear extrapolation m_{ps}^2 to $m_f = -m_{res}$ is zero. $m_{ps}^2 = 0$ at $m_f \approx -(2-3) \times m_{res}$ in quenched simulation. \longrightarrow Consistent with (quenched) chiral logarithms $(m_{ps}^2/m \sim 2B_0 + cm \log m)$ VS $(m_{ps}^2/m \sim \log m)$.
- NLO fit for $m_{sea,val} \in [0.01, 0.04]$ is not inconsistent.

0

0.01

0.02

m valence

0.03

0.04

0.05

Pseudoscalar Meson mass ...

0.02

0.03

0.04

0.05

- NLO fit using $m_{sea,val} \leq 0.03$
- constraints:

•
$$m_{ps}^2 = 0$$
 at $m_{val,sea} = -m_{res}$,

- f = 0.0781 from linear fit of f_{ps} .
- From neutral pion mass $\bar{m} = 2.4(15) \times 10^{-4}$
- Using NLO for non-degenerate valence quark with same low energy constants

 $m_{strange} = 0.0447(25)$

• renormalized quark mass : $m^{\bar{M}S} = (m + m_{res})/Z_s,$ $Z_s \sim 0.6$ (Dawson Lattice2003).

3

0.01

Other Physical Results (preliminary)

• NLO fits results using m_{ps}^2 at $m_f = m_{sea,val} \leq m_f^{(max)}$. Pseudo-scalar wall-point (upper two column), and axial-vector wall point. uncorrelated χ^2 . Gasser-Leutwyler low energy constants L_i multiplied by 10^4 at $\Lambda_{\chi} = 1$ GeV.

$m_f^{(max)}$	$\chi^2/{\sf dof}$	$2 B_0$	$L_4 - 2L_6$	$L_{5} - 2L_{8}$
0.03	0.1(1)	4.0(3)	-1.5(7)	-2(1)
0.04	2(1)	4.2(1)	-0.2(4)	-1.1(4)
0.03	0.3(2)	4.0(3)	-1.9(8)	-1(1)
0.04	1.9(9)	4.2(1)	-0.4(4)	-0.8(3)

• By linear extrapolations/interpolations for f_{ps} to \bar{m} and m_s ,

	$N_F = 2$	experiment	$N_F = 0$
f_π	134(4)	130.7	129.0(50)
f_K	157(4)	160	149.7(36)
f_K/f_π	1.18(1)	1.224	1.118(25)

better agreement with experiment than quenched DWF simulations.

Other Physical Results (preliminary)...

 $J = m_V \left. \frac{dm_{ps}^2}{dm_V} \right|_{m_V/m_{ps}=1.8}$

m_{sea}	$-m_{res}$	0.02	0.03	0.04	quenched $\beta = 1.04$
J	0.461(61)	0.408(19)	0.393(25)	0.349(50)	0.387(16)

closer value to the phenomenological estimation 0.48(2).

• Baryon mass :

$$\frac{m_N}{m_{
ho}} = 1.34(4)$$

larger than experimental value, and consistent with quenched results for $m_{sea,val} \in [0.02, 0.04]$. The sea quark effect is hardly seen in current statistics.

conclusion

- We have generated ensembles of Lattice QCD with $N_F = 2$ dynamical DWF • three m_{sea} : 0.02, 0.03, 0.04 corresponding to $m_{ps}/m_V = 0.54(1), 0.60(1), 0.65(1)$ or $m_{ps} \approx \frac{1}{2}, \frac{3}{4}, 1 \times m_{strange}$, • Statistics: ~ 5,000 trajectories, • Lattice spacing: $a^{-1} = 1.690(53)$ GeV, • Volume: $V \approx (1.9 \text{fm})^3$, • $m_{res} = 0.001372(44) \leq 5$ MeV
- The NLO fit to m_{ps}^2 is not inconsistent.
- NLO formula did not describe the data of f_{ps} .
- Comparing to $N_F = 0$ DWF, closer agreements with experimental value are found.

Exploratory results of $N_F = 3$

- $16^3 \times 32$, DBW2, $\beta = 0.72$, $m_{sea} = 0.04$, $L_s = 8$ 1,500 trajectories generaged using HMC-R ($\Delta t = 0.01$) $\implies m_{res} = 0.017(1)$, $a^{-1} \approx 1.6 - 1.7$ GeV at chiral limit using m_V, r_0 .
- m_{res} as a function of valence L_s (M. Lin, Mawhinney)

 $m_{\rm res}$ versus L_s for $N_f = 0, 2$ and 3

• RHMC is implemented in CPS (Clark) .