ILFTN @ Izu

ILFT Network – Izu, Japan – September 04

AC Irving, 21/9/04

UK Q C D collaboration

Liverpool

Liverpool Lattice Group: Flavour singlet spectrum

Alan Irving

University of Liverpool

- 1. Who's who in the Liverpool lattice group
- 2. Flavour singlet physics with Wilson quarks
- 3. Singlet physics with Improved Staggered quarks
- 4. Conclusions and outlook

Who's who

Chris Michael Light hadrons Singlets (wilson) Heavy quarks

Zbyszek Srockzinski Phys/programmer

Alan Irving Light hadrons Singlets (stagg) Grid

Paul Rakow

Structure fns Overlap

Craig McNeile Light/Heavy quarks Singlets, Grid, Software...

Stewart Wright (← Eric Gregory) Chiral extrapol methods

Steve Miller Gballs, scalars

ILFTN @ Izu

Singlet physics with Wilson quarks

Chris Michael, Craig McNeile, ...

Liverpool

Some history:

- Phys.Rev.D63:114503,2001, Glueball-scalar mixing
- Phys.Lett.B491:123-129,2000, Err.B551:391,2003, η η' mixing
- Phys.Rev.D65:014508,2002 (+ K Sharkey), Scalar mesons
- Nucl.Phys.Proc.Suppl.119:266-268,2003 (+ A Hart), Scalar particles
- •Concentrate on 0++ states
- •Pure glue requires order 10^4 configs $\rightarrow m(0^{++}) \sim 1600 \text{ MeV}$
- •Benefits from asymmetric actions (Morningstar and Peardon)
- •Interest is in the effects of light quark effects (meson glueball mixing)
- •Dynamical light quarks
- •Simulation limitations

Experimental light scalar spectrum

Liverpool

• Scalars separate into 2 groups above/below 1 Gev (e.g. Close, Tornquist hep-ph/0204205, JPhysG 28 (2002) R249)

Quenched

- no sea quark loops L
- M and G states are distinct, C(t) is same for S and NS scalars
- (valence) mixing matrix element estimate <LG> (McN & M)
- care: anomalous contributions from 0^{-0⁻} interm. states

Lattice methods

Glueballs (G)

- APE smearing (2 levels) + Teper blocking (3 levels) of spatial links
- Time plane sums for scalar operators for |p|=0,1
- Tensor operators for |p|=0 only

Connected mesons (M)

- Local and smeared/fuzzed operators from $q = M^{-1}S$

Disconnected (loop) contributions (L)

- $L = Tr(\Gamma M^{-1})$
- Stochastic estimators
- Volume sources, noise reduction techniques

Variational techniques

•Factorising fits

Quenched results

See PRD 63 (2001) 114503, (CMcN&CM) for quenched evaluation of mixing M.E. at the strange quark mass $r_0 x_{00} \approx 0.76(12)$ for 1 flavour of strange quark Gball $\begin{pmatrix} am_0 & \sqrt{2}ax_{00} \\ \sqrt{2}ax_{00} & as_0 \end{pmatrix} = \begin{pmatrix} 0.95 & 0.42 \\ 0.42 & 1.39 \end{pmatrix} \rightarrow \text{eigenstates at} \quad 0.69 \text{ and } 1.65$ scalar meson \Rightarrow 25% downward shift of scalar glueball in

n_f=2 simulations?

Full QCD results for O++

New analysis of CP-PACS ensembles

Liverpool

- C Michael and student J Pickavance have begun an analysis of CP- PACS configs from: <u>www.lqa.rccp.tsukuba.ac.jp</u>
- 1. glueball analysis
 - compare with UKQCD n_f=2, NP improved Wilson/clover
 - is this a 'better' gauge action?
- 2. Fermion loops (+ C McNeile)
- 3. Mixing analysis à la McNeile & Michael

Quarks are still quite heavy $(m_{\pi}/m_{\rho} = 0.8 \rightarrow 0.6)$ Mixing ME analysis only good for heavy(ish) quarks (on-shell transition amplitudes)

 \Rightarrow better to make direct measurements

- dynamical configs with lighter quarks
- gluonic and mesonic operators

Singlet physics with Improved Staggered quarks

Liverpool

Steven Miller, ACI, CM, CMcN, ...

SM Thesis project:

•Develop singlet (glueball and meson) measurement formalism for improved staggered fermions

•Test using largest available MILC configuration ensembles.

•Measure scalars/glueballs on high statistics ensemble generated in first runs on UKQCD 'phase I' QCDOC machine.

•Use/augment SCIDAC/JLAB standard code 'Chroma ' to promote future developments.

Additional applications:

• η/η'

• other processes involving disconnected contributions

Glueball measurements on MILC emsembles

Liverpool

• Use MILC ensembles (at NERSC: qcd.nersc.gov) generated using the Asqtad action (Bernard et al: PR D64 (2001) 054506)

Ensemble	β	m _l /m _s	$2am_{\pi}$	am ₀₊₊
Α	6.81	.03/.05	0.755	0.934(37)(-107)
В	6.79	.02/.05	0.623	1.099(45)(-132)
С	6.76	.01/.05	0.449	0.927(41)(-120)
D	6.76	.007/.05	0.378	0.801(41)(-188)
E	7.11	.0124/.031	0.413	0.740(48)(-60)
F	7.09	.0062/.031	0.296	0.716(54)(-61)

a ~ 0.125 fm

a ~ 0.09 fm

Effective mass plots for scalar glueball

Staggered results for O⁺⁺ using glueball operators only

Quenched data 1.8 UKQCD, csw=1.76 UKQCD, csw=2.02 UKQCD (MILC) Asqtad 1.6 EXPT, f0(1370) EXPT, f0(1500) EXPT, f0(1710) ∧₉9 ^{1.4} ⁺⁰ 1.2 ^{±0} 1.2 1.4 ₹ ₹ 0.8 ¥ ¥ * 0.6 0.01 0.02 0.03 0.005 0.015 0.025 0 $a^2 fm^2$

- Less suppression at fixed a² than Wilson
- Downward drift with lighter quark mass

Comments on pure glue measurements

- Unlike previous analyses, quarks are light enough for scalar glueball/meson to decay into two pions.
- Need 'proper' treatment of decays...
- ... since dynamical quarks are light enough to induce mixing.
- O(500) configs is not really enough (c.f. 10,000 for pure gauge)
- Add in scalar meson operators.
- What about staggered complications?

- 'Taste' violations \rightarrow 4 x each quark flavour (O(a²) \rightarrow improvement..)
- $(\det M)^{n_f/4}$ to 'correct' sea quark activity in vacuum (some say 'dodgy'?)
- Valence meson operators give 16 copies (spin \otimes taste basis):

$$O = \overline{Q}(\Gamma_s \otimes \Gamma_T)Q$$

• e.g. Goldstone pion γ

$$\gamma_5 \otimes \gamma_5$$

- But $O = \overline{Q}(\gamma_4 \gamma_5 \Gamma_s \otimes \gamma_4 \gamma_5 \Gamma_T)Q$ also couples ...
 - ... so 'oscillating states' of opposite parity in general for any given taste representation.

	Pseudosc. rep.	J^{PC}	Parity partner	J^{PC}	
GDπ	$\gamma_5 \otimes \gamma_5$	0^{-+}	$\gamma_4 \otimes \gamma_4$	0+-	
	$\gamma_4\gamma_5\otimes\gamma_4\gamma_5$	0^-+	1⊗1	0++ -	Scalar
	$\gamma_5 \otimes \gamma_i \gamma_5$	0^{-+}	$\gamma_4 \otimes \gamma_i \gamma_4$	0^{+-}	
	$\gamma_4\gamma_5\otimes\gamma_i\gamma_4\gamma_5$	0^-+	$1 \otimes \gamma_i$	0++	local 1-link

- Goldstone π has exotic parity partner
- Scalar has non Goldstone π as parity partner

• Fits to C(t) include (at least) scalar + oscillating pion (non-GB):

$$c(t) = A_0 e^{-m_s t} + (-1)^t A_1 e^{-m_\pi t} + \cdots$$

- Fuzzing used (with factorising fits) seems to help fits for the pion (and disconnected loops see later) but NOT the scalar.
- This makes it difficult to include meaningful excited scalar and excited oscillating pion.
- Sample fits (next..)

Sample connected fits :

Liverpool

am _i	fit	am _π	am _{scalar}	am _{scalar} (excited)	χ² /do f
.03	LL, 2 exp, t=7-20	.409(5)	.784(40)	-	1.4
	L+F factor., 3 exp, t=3-9	.399(15)	.76(15)	.96(3)	large
.01	LL, 2 exp, t=5-20	.262(31)	.549(14)	-	0.8
	L+F fact, 3 exp, t=5-14	.269(18)	.65(13)	1.03(7)	0.9

•3 pole factorising fits not v stable (amplitude errors/correlated)

•4 pole fit with excited (oscillating) pion even less stable.

• scalar probably needs different fuzzing (difft wave fn).

Fit range stability for local fits

Taste violations in scalar channel

Liverpool

• Comparison of % taste violations with those for pion (for m=.03):

Operator	pion	scalar	
$\gamma_5 \otimes \gamma_5$	-	-	
1⊗1	8.6(3)	-	
$1 \otimes \gamma_i$	13.9(3)	6(4)	
$1 \otimes \gamma_i \gamma_4 \gamma_5$	17.9(3)	9(4)	
$1 \otimes \gamma_4 \gamma_5$	22.0(4)	14(5)	

- m('pi')/m('scalar') ~ 1.8
- m(rho) violations zero within errors

Disconnected loops *L(t)*

Liverpool

- Volume source with O(50) (Gaussian) noise vectors
- Monitor variance w.r.t. gauge and noise

 $Corr(t) = C(t) + 2D(t), \quad D(t) = < L(0)L(t) >$

- The parity partner of taste singlet scalar operator is $\gamma_4 \gamma_5 \otimes \gamma_4 \gamma_5$ This is taste non-singlet so has no disconnected piece.
- ⇒ connected piece C(t) has an oscillating parity partner while disconnected piece D(t) does not.
- Fit strategy:
 - Fit C(t) first to determine NS scalar and 0⁻ oscillating mass
 - Fit C(t)+2D(t) with oscillating 0⁻ parameters fixed.
 - 2 light valence quarks only
- Fuzzing improves isolation of ground state component in D(t).

Preliminary fits to MILC ensembles

Liverpool •

Co	D+2C fit		
amı	m _{osc}	m _{NS}	m _{scalar}
.03	.434(12)	.784(39)	.655(20)
.02	.334(18)	.736(57)	.541(19)
.01	.241(19)	.497(32)	.479(14)

Glue and meson operator comparison (prelim)

Comments on singlet meson measurements

- For unquenched case, the complete study of the O⁺⁺ channel should use basis consisting of various 'fuzzing' levels of:
 - 1. Glueball operators
 - 2. Connected meson contribution (ud+s)
 - 3. Disconnected meson contribution loops
 - 4. Two pion operators

- The study reported here has so far just included separate fits for (1), (2) (~Non-singlet) and (2)+(3) (singlet meson) using 2 degenerate light quarks only
- Light meson operators couple to much lower mass scalar states (no real surprise there...)
- This channel is definitely not 'gold-plated'

Recent related work on scalars

• 'SCALAR collaboration' (Kunihiro et al) PRD 70 (2004) 0345

- Coarse lattice (a ~0.2 fm, L~1.6 fm), Wilson + plaquette action
- O(800) configs at each of 3 kappas: $m_{\pi} / m_{\rho} \approx 0.83, 0.77, 0.70$
- Scalar singlet heavier than rho:

 $m_{\sigma}/m_{\rho} \approx 1.6, 1.3, 1.1$

- Prelovsek et al (hep-lat/0407037) dynamical and partially-quenched study of NS scalar using CU/BNL Domain wall dynamical configs.
 - m(a0) ~ 1.5-1.6 GeV (with large errors)
 - closer to a0(1450) than a0(980)?
 - evidence of unphysical (partial) quenching contributions

• Choice of operators?

 $\gamma_4 \gamma_5 \otimes 1$ 3-link spatial operator

• Signal estimates for the 3-link operator

 \rightarrow 200 noise samples c.f. 50 for scalar

- Despite initial optimism, useful glueball measurements on dynamical configurations will probably need 10000s rather than 100s of configurations.
- One can estimate mixing matrix elements using quenched configurations or dynamical ones with heavy quark masses but ..
- reliable estimates of physical glueball/meson states require large scale dynamical simulations with realistically light quarks.
- Existing MILC configs using (Asqtad) improved staggered quarks may already indicate significant mixing effects and give qualitative information about the underlying singlet spectrum.
- Forthcoming higher statistics data from QCDOC should provide considerably improved insight into lattice predictions for glueball and scalar meson systems.
- First QCDOC run: 24³X64, a=.125fm, m_u/m_s=0.01/0.039, 20K+ trajs.