
The limits of the Aoki phase with

Nf = 2 Wilson fermions at zero and finite

temperature

Ernst-Michael Ilgenfritz
Institut für Physik, Humboldt-Universität zu Berlin, Germany

in collaboration with

A. Sternbeck,
M. Müller-Preußker,
W. Kerler
http://www-pha.physik.hu-berlin.de

H. Stüben
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Occasionally, observations of unexpected phase transitions are

reported :

unimproved clover improved

Wilson fermions Wilson fermions

Wilson gauge action yes [1], yes [3] yes [2]

improved gauge action no [2], yes [4]



• case T = 0

1. Nf = 2 : F. Farchioni et al., hep-lat/0406039 ;

transition at β = 5.2, at small enough twisted mass

µ 6= 0 first order behavior at various κ,

a scenario replacing the Aoki phase at higher β.

2. Nf = 3 : S. Aoki et al. (JLQCD), hep-lat/040916 ;

preliminary in S. Aoki et al. (JLQCD), hep-lat/0110088 :

unexpected first order bulk transition at β ≤ 5.0, κ ≈ 0.135;

does not remain with improved gauge action !

• case T 6= 0

3. Nf = 2 : T. Blum et al., Phys. Rev. D 50, 3377 (1994) :

found an unexplained bulk transition

4. Nf = 2 : A. Ali Khan et al., Phys. Rev. D 63, 034502

(2000) and Phys. Rev. D 64, 074510 (2001) :

Aoki phase identified, not unexpected !



Bulk phase transitions render the continuum limit uncertain !

One suspected reason of metastabilities :

unphysical, small eigenvalues of the Wilson-Dirac operator

(eventually even stronger in the case of clover-improved

Wilson-Dirac operator, if the gauge action does not suppress

dislocations)

make simulations slow and create metastabilities/hysteresis.

Remedy :

twisted mass lattice QCD formulation, avoids small eigenvalues :

Det
[
1 (DW +m0) + iµγ5τ

3
]
= det

[
(D†W +m0)(DW +m0) + µ2

]
For us :

Exactly this source term, with h = µ→ 0, is testing the

parity-flavor symmetry breaking characterizing the Aoki phase

in some part of the β-κ plane.



For all phenomenological purposes :

It seems to be safe to use improved gauge action in conjunction

with clover improved Wilson fermions (including non-perturbative

tuning of the improvement coefficients) and to take advantage of

the ”gentleness” of this system even at lattice spacings of

a ' 0.1...0.2 fm.

Why then the interest in Wilson gauge action and

(unimproved) Wilson fermions ?

Indeed, new simulations with Wilson gauge action and Wilson

fermions, eventually with additional (”twist”) terms in the

Wilson-Dirac operator (see above).



Reasons for the renewed interest :

• a clean reference case for testing new algorithms;

• theoretical interest: question of localization of the

Wilson-Dirac operator, also because this is input to

DW fermions and to the overlap Dirac operator;

• interrelation between defects and fermion spectrum;

• analytical predictions exist :

S. Aoki, Phys. Rev. D 30, 2653 (1984);

• due to the promises of the twisted mass lattice QCD

approach; in order to exploit the computational advantages of

the twisted mass approach, one should explore the slightly

extended parameter space in order to keep away from phase

transitions.



For the advantages of the tm lattice QCD approach

(e.g. minimized lattice artefacts for twist angle ω = π/2)

R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz, JHEP 0108

(2001) 058, (hep-lat/0101001)

R. Frezzotti and G. C. Rossi, JHEP 0408 (2004) 007

(hep-lat/0306014)



Our original motivation to study the Aoki phase :

• After trying to improve HMC simulations by parallel

tempering at β = 5.6 and κ = 0.1550...0.1575

(the range of the TχL collaboration)

E.-M. I. , W. Kerler, M. Müller-Preussker, H. Stüben,

Phys. Rev. D 65, 094506 (2002) (hep-lat/0111038),
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(the range of the TχL collaboration)

E.-M. I. , W. Kerler, M. Müller-Preussker, H. Stüben,

Phys. Rev. D 65, 094506 (2002) (hep-lat/0111038),

• with respect to the topological tunneling rates (with

modest computational gain) we were looking for another

application of the method ...

• .... also with limited success in the κ-h plane.

• Study of of the autocorrelation matrix (including swaps

between neighboring κ or h values) shows: no gain in

statistics.

• Swapping is suppressed if HMC is optimized at each

parameter set !



Finally, in the production runs of the Aoki phase study,

we have used plain HMC !



2 The Aoki phase at T = 0

Nf = 2 dynamical Wilson fermions at T = 0 : There is a phase of

spontaneously broken parity-flavour-symmetry.
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• critical lines of second order phase transition where mπ0± = 0

• symmetry of the diagram : m0 ↔ −(m0 + 8) κ↔ −κ

Regions : A: 〈ψ̄iγ5τ3ψ〉 = 0 B: 〈ψ̄iγ5τ3ψ〉 6= 0



Goldstone theorem :

There are two massless states in the broken phase

mπ
2

π0

+π

+π0

κ (β)c

BA

κ

• Charged pions π± are the Goldstone bosons of the broken

flavour symmetry, massless for κ(1)
c (β) < κ < κ

(2)
c (β) .

• Neutral pion π0 is massless only at κ(i)
c (β) (the lower and

upper transition lines) due to the 2nd order phase transition.

• 〈ψ̄iγ5τ3ψ〉 6= 0 〈ψ̄iγ5τ1,2ψ〉 = 0 in region B



Verification (Aoki et al. )

• Aoki phase confirmed at strong coupling: β = 0

A

A

B

A

κ

1/4

3/8

1/8

8

−8/3

0

β

m0

0

35<ψιγ τ ψ> = 0

8

−2

analytically as well as numerically

extending to β =∞ ?
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>
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lim
V→∞
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• simulations on 44 − 84 lattices: ⇒ signals at β = 3.5,4.0,5.0

BUT no extrapolations to h = 0 were done!
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– a signal at β = 3.0− 4.0

– BUT not at β = 5.0− 8.0

⇒ We study the leftover interval β = 4.0− 5.0.

• A different interpretation of the (Bitar et al. 1997/98)

condensate 〈ψ̄iγ5τ3ψ〉 6= 0 Signal of chiral symmetry

breaking on the lattice

Vafa and Witten : parity and flavor cannot be broken in

massless continuum QCD !

A non-vanishing order parameter in the massless continuum

theory limh→0+〈ψ̄iγ5τ3ψ〉 = 2πρ(0) would signal nothing but

chiral symmetry breaking.



Reconciliation (Sharpe, Singleton (1998))

An analytical framework for discussing this scenario at a 6= 0

and m 6= 0 provided by chiral perturbation theory, with an

effective action

Lχ = f2π
4 Tr

(
∂µΣ†∂µΣ

)
+ Vχ

with Vχ = − c1
4 Tr

(
Σ + Σ†

)
+ c2

16

[
Tr

(
Σ + Σ†

) ]2

coefficients are functions of m and a (and the scale Λ = ΛQCD)

c1 ∼ mΛ3 + aΛ5 and c2 ∼ m2Λ2 +maΛ4 + a2Λ6 .

⇒ Main cases : c2 > 0 or c2 < 0



Two possible phases for c2 > 0 (left scenario) :

With ε = c1
2c2

changing,

|ε| ≤ 1 : then m2
± = 0 and

m2
0f

2
π

2c2
= 1− ε2 phase B realized

|ε| ≥ 1 : then
m2
±0f

2
π

2c2
= |ε| − 1 phase A realized, enclosing B

+π

+π0 π0 +π0

m
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2
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No flavor symmetry breaking for c2 < 0 (right) :

⇒ three degenerate pions with
m2
±0f

2
π

2c2
= 1 + |ε|



Instead : with driving term h 6= 0 (or twisted mass µ)
Vχ becomes :

(see Sharpe and Wu, Münster (2004))

Vχ = − c1
4 Tr

(
Σ + Σ†

)
+ c2

16

[
Tr

(
Σ + Σ†

) ]2
+ c3

4 Tr
(
i(Σ−Σ†)τ3

)
with c3 ∼ µ = h

• for c2 > 0 ⇒ 1st-order transition line in κ (disc. in µ = ±0)

• for c2 < 0 ⇒ 1st-order transition line in µ (disc. in κ, i.e. m0)

m0

µ

B

m0

µ

µc



Conclusion :

• Aoki’s proposal is realized at a 6= 0 if c2 > 0 (at low β ).

• A new first order phase transition at a 6= 0 for c2 < 0

(found by Farchioni et al. at higher β)

• Will we find the point with c2 = 0 ? Do we need to go to

bigger lattice volume in order to decide this ?

• Bitar’s interpretation becomes valid in the continuum limit.



Hybrid MC-simulations for full QCD

stand. Wilson action S[U ] = SG[U ] + logDetM(U, h) with Nf = 2

SG = β
∑

P

(
1− 1

3Re tr �P

)�
�

�+
Q

Q
Qs

M = 1(1− κD) + hiγ5τ
3

β =
6

g2
and κ =

1

2m0 + 8

order parameter at h 6= 0

〈ψ̄iγ5τ3ψ〉h '
−1

12V

〈
Tr

[
iγ5τ

3M−1(U, h)
]〉

U

Lattice sizes 44 − 124

β = 4.0− 5.0 κ = 0.15− 0.28

h = 0.003− 0.04



HMC run in standard Φ algorithm, with even-odd

preconditioning

• fixed τ = 1 per trajectory,

• acceptance rate > 75..85 %,

• tuned by stepsize ∆τ ;

• no alarming autocorrelation times for 〈ψ̄iγ5τ3ψ〉h,

• autocorrelation times generically bigger for κ above the Aoki

phase.

• Parallel tempering swaps strongly suppressed (if ∆τ are

optimally tuned for each (κ, h) pair).



Observables of interest

1. Order parameter 〈ψ̄iγ5τ3ψ〉
Full fermion matrix M(U, h) = diag

(
M(U, h),M(U,−h)

)
,

with M(U, h) = 1− κD+ ihγ5 in one-flavor subspace.

Full fermion determinant positive :

DetM(U, h) = det[M(U, h)M(U,−h)] = |det[M(U, h)]|2.

The order parameter is then

〈ψ̄iγ5τ3ψ〉h ' −1
12V

〈
Tr

[
iγ5τ

3M−1(U, h)
]〉

U
.

Calculated as

〈ψ̄iγ5τ3ψ〉h ' 1
12V

〈
Im tr

[
γ5M−1(U, h)

]〉
U

with the final tr estimated by a stochastic estimator :

tr
[
γ5M(U, h)−1

]
' η†γ5ζ

with η Gaussian complex vectors and ζ =M(U, h)−1η.

Finally, take the limits h→ 0 and V →∞ !



Observables of interest

1. Order parameter 〈ψ̄iγ5τ3ψ〉

2. Pion norm (Bitar et al. (1989)

||π||2 =
∑

x πxπ0 =
∑

x(ψ̄xγ5ψx)(ψ̄0γ5ψ0)

with M(U, h)† = γ5M(U,−h)γ5
||π||2 = 1

24V Tr
[
M(U, h)−1†M(U, h)−1

]
||π||2 = 1

12V tr
[
M(U, h)−1†M(U, h)−1

]
Hermitean matrix γ5M(U, h = 0) has eigenvalues λj,

the eigenvalues of γ5M(U, h) are λ̃j = λj + ih

〈||π||2〉U = 1
12V

〈∑
j

1
λ2j+h2

〉
U

The pion norm operator is sensitive to small eigenvalues

of γ5M(U, h = 0) : configurations with zero eigenvalues of

M(U, h = 0) produce poles in ||π||2.



Observables of interest

1. Order parameter 〈ψ̄iγ5τ3ψ〉

2. Pion norm (Bitar et al. (1989)

Actually, the trace is evaluated by a stochastic estimator :

〈||π||2〉U ' 1
12V 〈ζ

†ζ〉U
with η Gaussian complex vectors and ζ =M(U, h)−1η.

3. Polyakov loop Ω~x

• exclude quasi-deconfinement (small volume) at T = 0

• localize the thermal transition at finite T relative

to the Aoki phase signal



Numerical results

A typical data set for the order parameter

2000 CPU h + 20%

�
�

�
�

�
�

�
�	

β = 4.0 on a 6
4
lattice
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〈ψ̄iγ5τ3ψ〉

• Projection over κ ⇒ κ∗ (maximum for h 6= 0)

• Projection over h ⇒ 〈ψ̄iγ5τ3ψ〉 , limit h→ 0 along κ∗
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Figure 5.6: The order parameter 〈ψ̄iγ5τ
3ψ〉 measured on a 64 lattice as a function

of h at β = 4.0. On the left hand side at the values of κ ≤ κ∗, whereas at κ ≥ κ∗ on
the right hand side. The lines are spline interpolations to guide the eye.
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Typical behavior of the pion norm
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Order parameter at β = 4.0
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Mean-field equation

h = A0σ
3 +A1

(
κ− κ(i)

c

)
σ with σ ≡ 〈ψ̄iγ5τ3ψ〉.

ansatz

f(h) = A+BhC + . . .
[
Bitar C ≡ 1/3

]



Fisher plot : test of the mean-field behavior

plot all data points in the

h/〈ψ̄iγ5τ3ψ〉 – 〈ψ̄iγ5τ3ψ〉2 plane :

• mean-field behavior : straight parallel lines

• lines for κlowerc and κupperc go through the origin

• positive intercept ⇒ non-vanishing order parameter
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Figure 5.11: The squared order parameter 〈ψ̄iγ5τ
3ψ〉2 is shown as a function of

h/〈ψ̄iγ5τ
3ψ〉 at κ ≤ κ∗ on the left hand side and at κ ≥ κ∗ on the right hand side.

The data are taken from simulations on a 64 lattice at β = 4.0. The dotted lines are
lines of constant h. The values are h = 0.003, 0.005, 0.01, 0.02, 0.03, 0.04, from left to
right.
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Order parameter at β = 4.3
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using the same ansatz

f(h) = A+BhC + . . . robust against correction terms

fit parameter at β = 4.0 and β = 4.3:

A > 0 B = 1.00(4) C = 0.65(2)



Pion norm at β = 4.3, β = 4.6, β = 5.0
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Figure 5.13: The squared order parameter 〈ψ̄iγ5τ
3ψ〉2 is shown as a function of

h/〈ψ̄iγ5τ
3ψ〉 at κ ≤ κ∗ on the left hand side and at κ ≥ κ∗ on the right hand side.

The data are taken from simulations on a 64 lattice at β = 4.6. The dotted lines are
lines of constant h. The values are h = 0.005, 0.01, 0.02, from left to right.

at the present time, since they require a large amount of computing resources. Thus
the limit of infinite lattice size can only insufficiently be extrapolated. Looking at
the Figures 5.14 and 5.15 where the order parameter 〈ψ̄iγ5τ

3ψ〉 is shown as a func-
tion of h, it can be verified that the more h is decreased the more finite lattice size
effects are relevant. Nevertheless, they neither increase nor decrease substantially
if measured on a 84 and a 104 and thus are almost negligible. Only the results at
β = 4.0 from simulations on a 44 lattice differ from the remaining ones. From the
Fisher plots it also turns out that the finite-size corrections go into the right direc-
tion as the lattice size is increased, i.e. they extrapolate rather to a finite value on
the ordinate.

Therefore it can be assumed that at each h the result from the largest lattice lies
within errors on the envelope in the limit of infinite lattice size, apart from the ones
at h = 0.003. These were obtained only from simulations on a 64 lattice and thus
larger finite-size effects cannot be excluded at this small value of h.

Consequently, for the following fits4 only the data for h > 0.003 — each taken
from the largest lattice — were used and are referred to as the data in the infinite
volume limit.

In [26] it is pointed out that in this limit the data are expected to behave as

f(h) = A+Bh
1

3 + . . . (5.3)

in the presence of a parity-flavour-breaking phase which corresponds to a mean-field
like ansatz . Following [26] the data were fitted to (5.3) with linear and/or quadratic

4 In this study the data were fitted using an implementation of the nonlinear least-squares
(NLLS) Marquardt-Levenberg algorithm provided by gnuplot 3.7.2.



Order parameter at β = 4.6
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the Bitar-type fit ansatz can be applied here as well (with C = 2/3)

f(h) = A+BhC + . . . A = 0, B = 1, C = 0.63(3)

Compare with parameters at β = 4.0 and β = 4.3 where

A > 0 B = 1.00(4) C = 0.65(2)



Some problems at β = 4.6

• asymmetric peak

• displacement with increasing volume



Order parameter at β = 5.0
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There is obviously no finite value of the order parameter at h = 0

on lattice sizes up to 124.



Conclusion : Phase diagram at T=0

Proposal:
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Conclusion : Phase diagram at T=0

Result:
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3 The finite-temperature case

Proposal for T > 0 (Aoki et al. 97/98)

The Aoki phase forms a cusp surrounded by the confined phase
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Results for 83 × 4 and 103 × 4 at β = 4.6 and fixed
h = 0.005

(few preliminary results also presented at Lattice 2003 by A.

Sternbeck)
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After Lattice 2003, as long as the Cray T3E was running,

⇒ continuing data taking on a finer κ grid for β = 4.6



Polyakov loop L, susceptibility χL, ψ̄ψ, ||π||2 and 〈ψ̄iγ5τ3ψ〉 vs. κ
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Finer structure in ||π||2, L, 〈ψ̄iγ5τ3ψ〉 and ψ̄ψ near κc
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Extrapolation to h = 0 for 83 × 4 and 103 × 4 at

β = 4.6
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⇒ a non-vanishing condensate

established over the interval 0.19690 ≤ κ ≤ 0.19710



Fisher plot for 83 × 4 and 103 × 4 at β = 4.6
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⇒ result above corroborated by Fisher plot

⇒ the finite T transition is located at κ = 0.1971



Warning: strong autocorrelations seen at κ = 0.19710
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4 Conclusion

• For the zero temperature case

the Aoki phase can only be

confirmed at strong coupling,

i.e. β < 4.6
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– Does the result change on

larger lattices ? (� 104)

– Does a broken phase exist with

improved Wilson action ?

• For the non-zero temperature case an Aoki phase

can be confirmed even at β = 4.6

– the phase is shifted to lower κ

κT>0 = 0.19705↔ κT=0 = 0.1983

– the Aoki phase seems to pass into the

finite temperature transition line (not separable so far)
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