LATFOR Initiative, Grid, Computers

• Organisation: Lattice Forum (LATFOR)

- Initiative of German Lattice Physicists
 with associated countries Austria and Switzerland
- Coordination of physics programme
- Common uasge of Software and raw data \rightarrow Datagrid
- Requirement of Supercomputer resouces

http://www-zeuthen.desy.de/latfor

coordination at NIC/DESY Zeuthen

Major reasearch areas within LATFOR

- ab initio calculations of QCD with *dynamical quarks*
 - Hadron spectrum and structure functions
 - fundamental parameters of QCD
 - B-physics
- matter under extreme conditions
 - QCD thermodynamics
 - QCD at non-vanishing baryon density
- Non-QCD physics
 - Electroweak standard model
 - Supersymmetry
- Conceptual developments
 - exact chiral symmetry on the lattice
 - Twisted mass lattice fermions
 - algorithm development

I ATFOR council

Z. Fodor, K. Jansen (Speaker), F. Karsch, G. Münster, A. Schäfer, J. Wambach, U. Wolff

- LATFOR Supercomputer Resources?
 - \rightarrow DESY 3 TFlops
 - → National Supercomputer Centers: FZ Jülich 10TFlops, IBM Regatta HLRN (Berlin, Hannover) 7TFlops IBM Regatta HLRS (Stuttgart) 1.4TFlops NEC/CRAY LRZ (München) 2TFlops Hitachi

 - fold with efficiency 15%
 fold with ET contingent 20% \Rightarrow 1 TFlops
 - \rightarrow University of Wuppertal: cluster with 1024 Opteron processors, 50% for LGT, 1GFlops sustained
 - \rightarrow University of Bielefeld: Proposal for 5 TFlops
 - \rightarrow Smaller clusters at HU, Münster, DESY \rightarrow small QCDOC at Regensburg
- Definition of benchmarks for actions and algorithms
- Participation in International Lattice Data Grid (ILDG)

Requirements for realizing the LATFOR physics program

Typical user profile

lattice size	$32^3 \cdot 64$
memory	40 Gbyte
I/O request	0.1 Mbyte/sec/Gflops
minimal machine size	32 nodes
total runtime	>5 Teraflops-years

 \Rightarrow need of 12.5 **Teraflops sustained** (1-2 Teraflops sustained per project)

in accordance with other evaluations

• ECFA Report

Requirements for high performance computing for lattice QCD: report of the ECFA working panel F. Jegerlehner et.al., CERN 2000-002, ECFA/00/200

NuPECC Report

The NuPECC Working Group Computational Nuclear Physics

M. Baldo et.al., June 2000

\Rightarrow massively parallel computers with a very fast communication network

Array Processor Experiment \rightarrow APE

APEmille installation in Zeuthen
550 Gflops peak speed
32 Gbytes memory
1024 Processing units
machine runs very stable
many physics results

apeNEXT: collaboration of lattice physicists from INFN, DESY and University of Paris Sud

10 Tflops peak speed, 1-4 Tbytes memory O(6 000) Processing units, 0.5Euro/Mflops peak performance Developing Future Infrastructure: apeNEXT

□ **Planned**: \rightarrow 1+1 racks at INFN+DESY = 1.6 Tflops

Status (June 2004):

- 10 PBs (160 processors) being assembled
- First physics codes running as hardware tests
- 1000 more processors in O(20) weeks
- Tender for 5 TFlops at INFN (option for further 5 TFlops at INFN + other sites)
- Tender for 3 TFlops at DESY

Aims:

- Physics production on 1.6 TFlops prototype
 - Stable hardware
 - rightarrow Efficient + stable software

D-Grid, HEP-Grid, Lattice Data Grid

- D-Grid: German Grid of several (5) Communities
- High Enegry Physics, HEP Grid → mainly experimental physics
- call for proposals from German Science Ministry just open
 - budget for community grids and one integration project
 - Lattice Data Grid
 - \rightarrow initial partner labs: NIC, DESY, FZ-Jülich, ZIB
 - \rightarrow participate in Metadata working group
 - \rightarrow announcement of SESAM, $\chi \rm LF$ configurations soon
 - → plan of having a prototyp Grid running at German-Japanese workshop, November 2004
 - Middleware
 - \rightarrow LCG based, d-Cache system, development of DESY/FermiLab
 - \rightarrow works for DESY experiments, adapt to lattice requirements
 - \rightarrow Metadata and Replica catalogues, Storage Resource Manager

