Effects of low-lying fermion modes in the epsilon regime

Shoji Hashimoto (KEK) @ ILFT workshop, Izu-Shuzenji, Sep. 22, 2004.

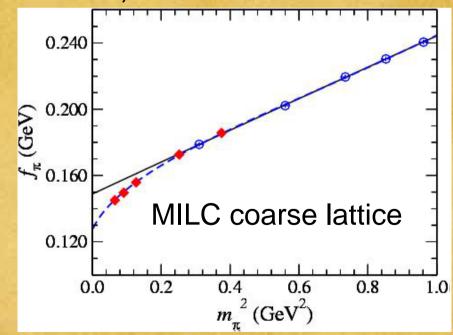
Work in collaboration with H. Fukaya (YITP) and K. Ogawa (Sokendai, KEK)

Problem of chiral "extrapolation"

- Chiral extrapolation is required to reach the physical up and down quark masses.
- Source of large systematic uncertainty.
- Computationally very hard in the dynamical simulations, especially with the Wilson-type fermions

Chiral log $m_{\pi}^2 \ln m_{\pi}^2$ with a fixed coefficient.

JLQCD, Nf=2

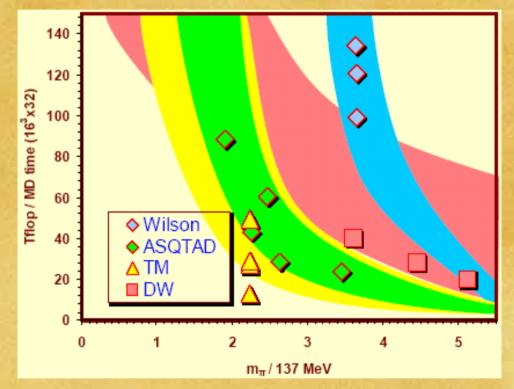


Staggered fermion can go much lower.

How hard?

Computer time grows as 1/m_g³ **vs** No guarantee that c is really reached with Wilson fermion. **GS** Exceptional traj. H>>1 are often observed.

Kennedy@Lattice 2004



Advantage of fermion formulations having well-defined chiral limit.

Jumping to the chiral limit

- Extract physical quantities without chiral extrapolation.
- The advantage of the Ginsparg-Wilson fermions would become more apparent.
- Interesting to see if
 they really work near
 the chiral limit.
- Effects of dynamical fermions.

Price one has to pay = finite volume effect.
 On a L=1.5 fm lattice physical pion gives m L~1; pion Compton wave-length is comparable to the lattice size. For smaller quark masses it is even longer.

Such region is known as the epsilon regime of QCD.

QCD in the epsilon regime

Chiral Lagrangian

$$\mathsf{L} = \frac{F^2}{4} \operatorname{Tr}(\partial_{\mu} U \partial_{\mu} U^{\dagger}) - \frac{m\Sigma}{2} \operatorname{Tr}(e^{i\theta/N_f} U + e^{-i\theta/N_f} U^{\dagger})$$

When m = 0 (m = L < 1), fluctuation of the zero momentum mode becomes important.

 $U(x) = U_0 e^{i\sqrt{2}\xi(x)/F}$ and integrate over U_0 .

Expansion in terms of

$$\frac{m_{\pi}}{\Lambda} \Box \frac{p^2}{\Lambda^2} \Box \frac{1}{L^2 F^2} \Box \varepsilon^2$$

Gasser-Leutwyler (1987) -expansion: systematic analytical calculation is possible.

Analytic predictions

Leutwyler-Smilga (1992) **C3** Quark mass dependence of the QCD partition function **C3** Topological susceptibility Sum rules for the eigenvalues of the Dirac operator Verbaarschot-Zahed, Akemann, Damgaard, ... (1993~) **G** Eigenvalue distribution of the Dirac operator from the **Random Matrix Theory** Damgaard et al. (2002~) **Correlation functions in the epsilon regime**

Can test the lattice simulation using these known relations; determine the fundamental parameters: F, , LECs

Outline of this talk

- 1. Brief review of the Leutwyler-Smilga's predictions
- 2. Lattice setup: overlap Dirac operator
- 3. Truncated Determinant Approximation for Nf=1
- 4. Numerical results for the partition function, etc.
- 5. Correlation functions

1. Brief review of the Leutwyler-Smilga's predictions

Partition function for Nf=1

No Nambu-Goldstone mode in the Nf=1 case.
Freeze the momentum fluctuation in the regime

$$Z = \exp[\Sigma V \operatorname{Re}(me^{i\theta})]$$

Partition function for each topological sector:

$$Z_{v}/Z = I_{v}(m\Sigma V) \exp(-m\Sigma V)$$

Topological susceptibility:

$$\left\langle v^2 \right\rangle = \sum_{v} v^2 Z_v / Z \to m \Sigma V (m \to 0)$$

Sum rules for eigenvalues

 \bigcirc Derivative of Z w.r.t. m

$$\int [dG] e^{-S_G} m^{\nu} \prod_{n=1}^{r} (\lambda_n^2 + m^2) = m^{\nu} \left\langle \prod_{n=1}^{r} (1 + \frac{m}{\lambda_n^2}) \right\rangle_{\nu}$$

Then, for each topological sector,

$$\left\langle \sum_{n}^{\prime} \frac{1}{\left(\lambda_{n} \Sigma V\right)^{2}} \right\rangle_{\nu} = \frac{1}{4(\nu+1)}$$

LHS is UV divergent, but only affects 1/V corrections.

$$\sum_{n} \approx \frac{N_c}{4\pi} V \int \lambda^3 d\lambda$$

Smilga, in "Handbook of QCD" "The main interest here is not so much to "confirm" these exact theoretical results by computer, but, rather, to test lattice methods. This was a challenge for lattice people..."

2. Lattice setup: the overlap Dirac operator

Lattice setup

Solve the second state of the second state

C3 M L = 1 at m = 7 MeV
C3 m V = 1 at m = 42 MeV
C3 168, 290, 149 quenched configurations for | |=0, 1, 2

Overlap Dirac operator

Overlap Dirac operator

$$D = \frac{1+s}{a} \left[1 + \gamma_5 \operatorname{sgn}(H_W) \right]$$

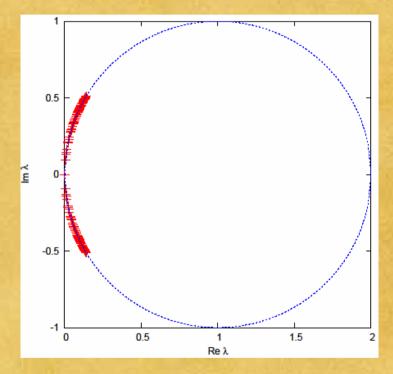
For sgn(H_W), 14 lowest eigenmodes of H_W is treated exactly; the rest is approximated using the Chebyshev polynomial (order 100-200) to satisfy the accuracy 10⁻¹⁰
 On an Itanium 2 (1.3 GHz, 3MB) workstation one multiplication of *D* takes about 10 sec.

Eigenvalues & eigenvectors

For each gauge config, 50 lowest eigenvalues and their eigenvectors are calculated using the ARPACK (implicitly restarted Arnoldi method).

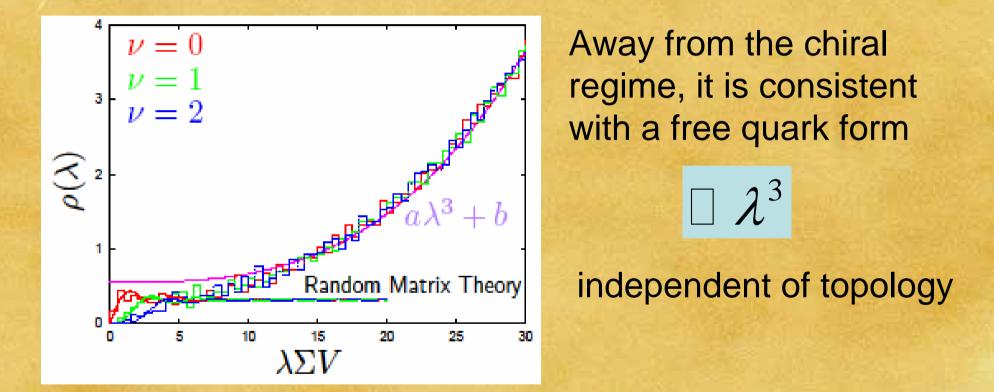
C3 They appear as pairs (i, i*); calculate

$$\frac{1+\gamma_5}{2}D\frac{1+\gamma_5}{2} = \operatorname{Re}(\lambda)$$



Cost Topological charge is determined by counting the number of zero modes.

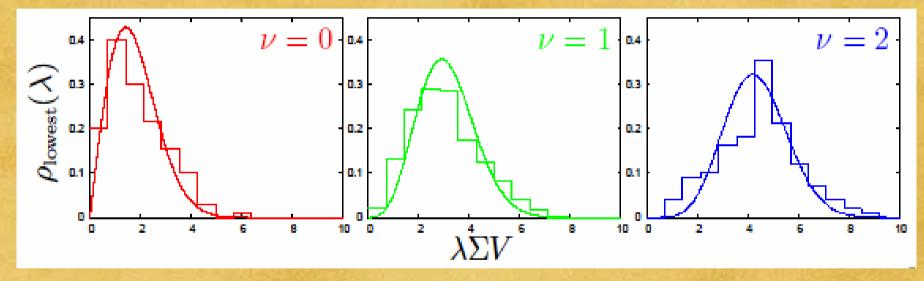
Eigenvalue distribution



Near the chiral limit, the distribution becomes sensitive to the topological charge; described well with the Random Matrix Theory.

Comparison with RMT

Distribution of the lowest lying mode:



Lines are from RMT (Nishigaki, Damgaard, Wettig (1998))

Similar lattice observations by Edwards, Heller, Kiskis, Narayanan (1999); Hasenfratz et al. (2002); Bietenholz, Jansen, Shcheredin (2003); Giusti, Luscher, Weisz, Wittig (2003); Galletly et al. (2003)

3. Truncated determinant approximation for Nf=1

Fermion determinant

$$\det(D+m) = \prod_{i} \left(\left| \lambda_{i} \right|^{2} + m^{2} \right)$$

- CS The low-lying eigenmodes should be most relevant to the low energy physics.
- Higher modes reflect short distance physics, sensitive to the lattice artifact.

CS Reweighting the quenched config with a truncated determinant

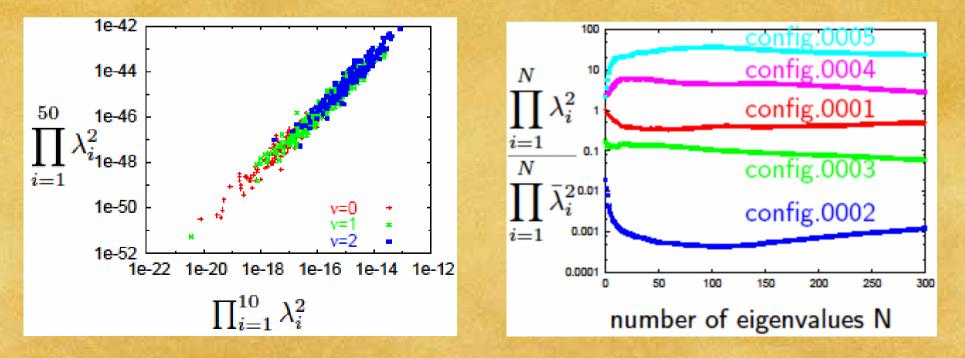
$$\prod_{i=1}^{N_{\max}} \left(\left| \lambda_i \right|^2 + m^2 \right)$$

- Og Duncan, Eichten, Thacker (1998)
 - C3 Treat the low-lying mode exactly in Monte Carlo
 - Higher mode could be included by an effective gauge action or multiboson.

How effective?

Here we just neglect the effects of higher modes. So Their effect is approximately constant, and independent of topology.

 \square Can be checked for each observable by varying N_{max} .

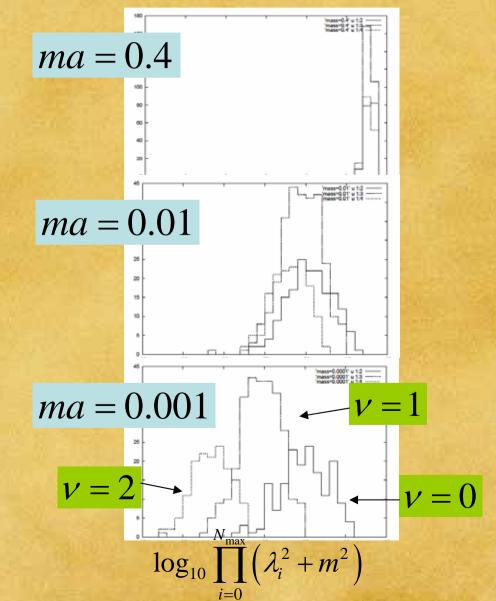


Disadvantages

SNOT exact

It may be possible to make it exact: Borici – UV suppressed fermion.

Effective number of statistical samples is substantially smaller.

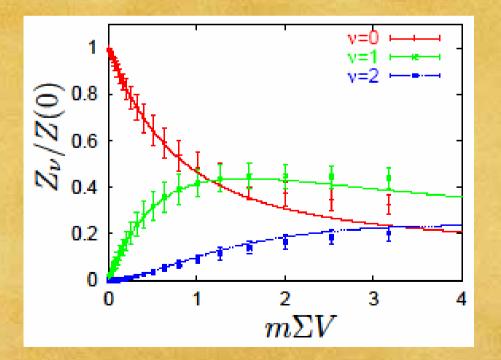


4. Numerical results for the partition function, etc.

QCD partition function

G For Nf=1, the QCD partition function is expected to behave as

$$Z_{\nu} / Z = I_{\nu} (m\Sigma V) \exp(-m\Sigma V)$$



• Good agreemenet below $m\Sigma V \Box 2$

• A fit yields

 $\Sigma = (243 \,\mathrm{MeV})^3$

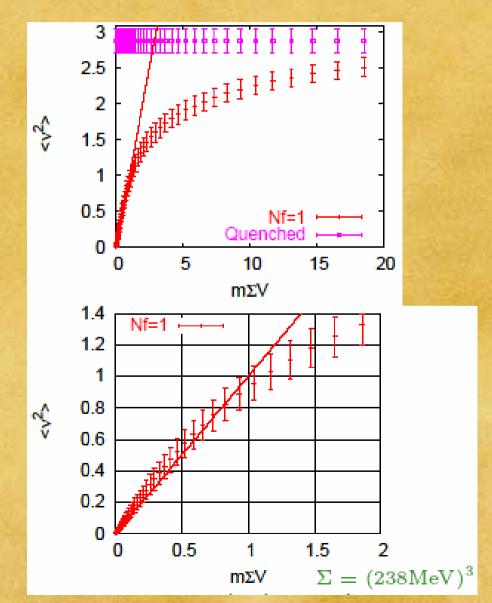
Topological susceptibility

 Topological susceptibility should behave as

 $\left\langle \nu^2 \right\rangle = \frac{1}{N_f} m \Sigma V$

Solution Well reproduced with $\Sigma = (238 \, \text{MeV})^3$

Earlier study by Kovacs (2001)

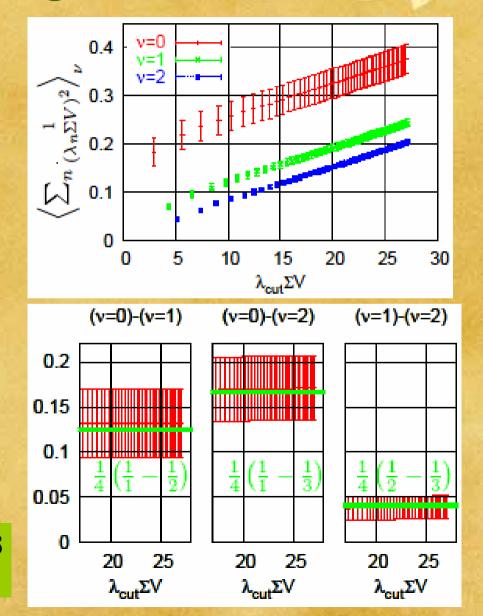


Leutwyler-Smilga sum rule

$$\left\langle \sum_{n}^{\prime} \frac{1}{\left(\lambda_{n} \Sigma V\right)^{2}} \right\rangle_{\nu} = \frac{1}{4(\nu+1)}$$

- LHS is quadratically divergent; need UV cutoff and careful study of volume dependence.
- Consider differences among different topological sectors.

$$\Sigma = (236 \,\mathrm{MeV})^2$$



5. Correlation functions

Correlators in the epsilon regime

- Once the properties of the vacuum is confirmed, the interest would be in the excitations.
- G ChPT analysis of meson correlation functions:
 - 3 Damgaard et al. (2002, 2003)
 - Giusti et al. (2003, 2004); Hernandez-Laine (2003)
 - First numerical study: Giusti et al. (2004);
 Bietenholz et al. (2004)

 \bigcirc Possibility to determine the parameters in ChPT: F, , LOCs w/o chiral extrapolation.

An example

In the quenched ChPT,

$$\begin{split} \left\langle P^{1}(t)P^{1}(0)\right\rangle &= L^{3}C_{P}^{1} - \frac{\Sigma^{2}}{2F^{2}} \left[-\frac{m_{0}^{2}T^{3}}{N_{c}}c_{+}h_{2}(\tau) + \left(\frac{\alpha}{N_{c}}c_{+} - b_{+}\right)Th_{1}(\tau) \right] \\ c_{+} &= 2 \left(I_{\nu}(\mu)K_{\nu}(\mu) - I_{\nu+1}(\mu)K_{\nu-1}(\mu) - \frac{\nu}{\mu^{2}} \right), \quad b_{+} = 2 \left(1 + \frac{\nu^{2}}{\mu^{2}} \right) \\ h_{2}(\tau) &= \frac{1}{24} \left[\tau^{2}(\tau-1)^{2} - \frac{1}{30} \right], \quad h_{1}(\tau) = \frac{1}{2} \left[\left(\tau - \frac{1}{2}\right)^{2} - \frac{1}{12} \right], \quad \tau = \frac{t}{T} \end{split}$$

C3 Divergence in the massless limit $\mu \equiv m\Sigma V \rightarrow 0$ C3 Strong dependence on the toplogical charge C3 Allows to determine *F*, m_0^2 , in principle

Lattice measurement

Very hard to solve the quark propagator near the massless limit.

Construction using the eigenvectors

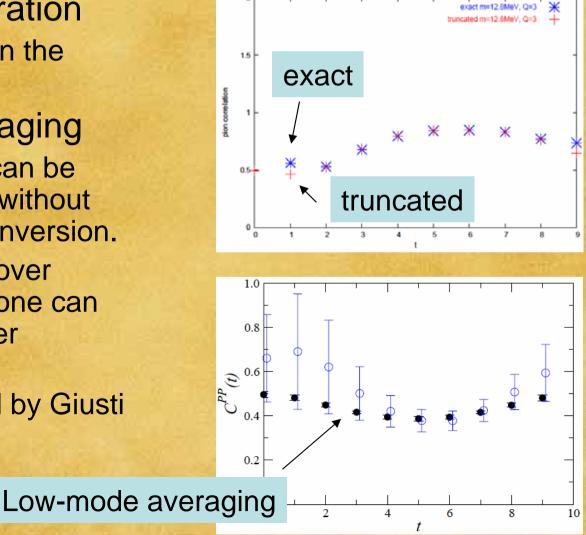
$$\left\langle q(x)\overline{q}(0)\right\rangle = \sum_{i} \frac{u_{i}(x)\overline{u}_{i}(0)}{m+\lambda_{i}}, \quad Du_{i}(x) = \lambda_{i}u_{i}(x).$$

saturates the PP correlator with the 50 eigenmodes to 99.5%. Only below ma=0.008 and for 0.

Giusti, Hoelbling, Luscher, Wittig (2003).

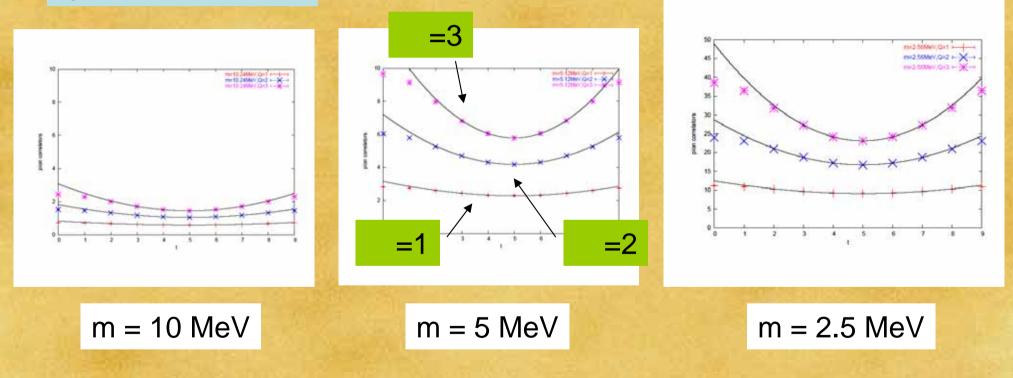
More about techniques

C Low-mode saturation c3 as discussed in the previous page **C**³ Low-mode averaging **G** Source point can be freely chosen without extra cost for inversion. **C3** By averaging over lattice points, one can get much better statistics. **G** Also proposed by Giusti et al. (2004)



A preliminary result

"pion correlator"



Expected behavior: $\Box \frac{v^2}{(m\Sigma V)^2} \left(\frac{t}{T} - \frac{1}{2}\right)^2$ A fit yields $\Sigma \square (300 \text{ MeV})^3$, $F \square 110 \text{ MeV}$ at Nf=0. m₀=600 MeV is assumed.

Summary and Discussions

Summary

Using the overlap Dirac operator, the theoretical predictions in the epsilon regime are reproduced. They are related to the properties of the QCD vacuum.

- Cos The reweighting with the truncated determinant works reasonably well.
- Application is broader: it is also possible to probe the low energy physics through the correlation functions.

Issues...

s To make the calculations exact, one must include the effects of higher modes. Is it feasible? Include them using the multi-boson-like algorithm. Highly non-local... Consider the truncated version as a new definition of the GW Dirac operator. Locality is okay --- Borici.

More issues...

As volume increases, the calculation of the eigenvalues/eigenvectors becomes much harder. What to do? \bigcirc Eigenvalues are denser ~ 1/V; calculation cost ~ 1/V. Centainly more difficult. Maybe one could treat the lowest few eigenmodes exactly and the rest with some other algorithms...