The Pion Form-Factor on the Lattice

Robert Edwards

Jefferson Lab

September 2004

Lattice Hadron Physics Collaboration

Research interests:

- Quark and gluon structure of hadrons
 - Nucleon & meson structure funcs, form-factors, GPD's...
- Spectroscopy of conventional and exotic states of hadrons
- Interactions between hadrons
- Fundamental aspects of QCD including confinement and chiral symmetry breaking
- Members:
 - R. Brower, C. Rebbi (Boston U.), C. Morningstar (CMU), S.
 Chandrasekharan (Duke), R. Fiebig, R. Narayanan (FIU)
 - R. Edwards, D. Richards, C. Watson (JLab),
 - X. Ji, I. Sato, S. Basak, S. Wallace (Maryland),
 - P. Dreher, J. Negele, K.Orginos, A. Pochinsky, D.Renner, W.Schroers (MIT)
 - M. Burkhardt (NMSU), E. Swanson (Pittsburg), H. Thacker (Virginia), F.X. Lee (GWU)

Pion Electromagnetic Form Factor $F_{\pi}(Q^2)$

- Considered a good observable for studying the interplay between perturbative and non-perturbative descriptions of QCD
 - Large Q² scaling as predicted by Brodsky-Farrar

$$\mathbf{F}_{\pi}(\mathbf{Q}^2) = rac{8\pi lpha_{\mathbf{s}}(\mathbf{Q}^2)\mathbf{f}_{\pi}^2}{\mathbf{Q}^2} \quad ext{as} \quad \mathbf{Q}^2 o \infty$$

- For small Q^2 , vector meson dominance gives an accurate description, with normalization $F_{\pi}(0) = 1$ given by charge conservation

$${
m F}_{\pi}({
m Q}^2) \sim rac{1}{1+{
m Q}^2/m_{
ho}^2} ~~{
m for}~~{
m Q}^2 \ll {
m m}_{
ho}^2$$

- Not too hard to calculate on the lattice no disconnected diagrams
- Experimental results are coming for Q^2 , 1 GeV²

Experimental Results

- Existing data fit VMD monopole formulae too well.
 Where's perturbative QCD?
- Because of simple valence structure, argued that PQCD should apply to lower Q² than other hadrons
- PQCD calc. far off.
- Experimental interpretation problematic – must extrapolate to the pion pole
- Use lattice QCD!

Latest published quenched lattice results

- Quenched clover results:
 - J. van der Eide, M. Lutterot, J.F.
 Kock, and E. Laermann,
 PLB566, 131 (2003)
 - J. van der Heide, J.H. Koch, and E. Laermann, heplat/0312023
- The results still consistent with VMD up to 2 GeV²
- Preliminary results by RBC Collaboration, hep-lat/0309173, with quenched DBW2+DWF, Q²
 < 0.5 GeV²

Lattice techniques for extracting $F_{\pi}(Q^2)$

- Use the sequential-sink method:
- Disadvantage: momentum p_f and pion quantum numbers are fixed at the sink
- Advantages: variety of form-factors, e.g. ρ!γπ computable from same set of propagators
- Largest Q² available in Breit frame (p_f = p_i). Need sequential propagators for several p_f.
- $F_{\pi}(Q^2)$ extracted either from simultaneous fit to several 2 and 3-point functions or by constructing ratios.

Three point functions, smearings and ratios

- The three-point correlator with APE smeared source A and sink B $\Gamma^{AB}_{\pi 4\pi}(t_i, t, t_f, \vec{p}, \vec{p}_f)$ $= e^{-i(\vec{x}_f - \vec{x}) \cdot \vec{p}_f} \langle \pi^B(\vec{x}_f, t_f) | V_4(\vec{x}, t) | \pi^A(\vec{x}_i, t_i) \rangle e^{-i(\vec{x} - \vec{x}_i) \cdot \vec{p}_i}$
- Ratio gives F_π(Q²,t) independent of Z's and exponentials (C = smeared or Local)

$$F(Q^{2},t) = \frac{\Gamma_{\pi 4\pi}^{AB}(t_{i},t,t_{f},\vec{p_{i}},\vec{p_{f}})\Gamma_{\pi\pi}^{CL}(t_{i},t,\vec{p_{f}})}{\Gamma_{\pi\pi}^{AL}(t_{i},t,\vec{p_{i}})\Gamma_{\pi\pi}^{CB}(t_{i},t_{f},\vec{p_{f}})} \left(\frac{2Z_{V}E_{\pi}(\vec{p_{f}})}{E_{\pi}(\vec{p_{i}}) + E_{\pi}(\vec{p_{f}})}\right)$$

Compare ratio with explicit fits

Computational Strategies

Quenched

- Here Wilson gauge and Wilson fermion actions
- Difficulty getting to chiral limit, m_{π} =1350MeV ! 290MeV
- Use quenched chiral perturbation theory not QCD!
- Low energy Gasser-Leutwyler constants not those of QCD
- Pathologies in quenched approx
- Dynamical (full QCD)
 - $N_f = 2 + 1$
 - Asqtad staggered sea quarks
 - Domain Wall valence quarks, m_{π} =758MeV ! 320MeV
 - Use partially quenched chiral perturbation theory have lattice corrections
 - Low energy Gasser-Leutwyler constants are those of QCD!

Calculation Details

Quenched unimproved Wilson fermions

Pion masses smaller than clover, but O(a) scaling violations

	VIOIALIONS		<u> </u>	lattice	m_{π} inev	m_{ρ} wev
	β =6.0, a=0.1fm		0.1480	$16^3 \times 32$	1350	1420
_	Conserved current	$Z_v = 1$	0.1520	$16^3 \times 32$	954	1100
		V	0.1540	$16^3 \times 32$	728	936
			0.1555	24 ³ × 32	518	796
			0.1563	24 ³ × 32	358	716
			0.1566	24 ³ × 32	290	686
			0.1566	32 ³ × 48	290	686

- Full QCD
 - N_f=2+1 Asqtad, a=0.12 fm, 20³£64 & 28³£64 am=0.01+0.05, m_π=356MeV, m_K=790MeV
 - N_f=3, Asqtad, a=0.125fm, 20³£ 64, am=0.05, m_{PS}=790MeV
 - DWF valence, HYP smeared, 20³£32 using Dirichlet BC, same a*m values -> 320MeV, 607MeV

5D Domain Wall

• Domain wall action: $\mathbf{S}_{\mathbf{DW}} = -\bar{\Psi} \mathbf{D}_{\mathbf{DW}}^{(5)} \Psi$ $\mathbf{S}_{\mathbf{DW}} = -\sum_{s=1}^{\mathbf{L}_{s}} \bar{\Psi}_{s} \left[(\mathbf{D}_{w}(-\mathbf{M}) + 1) \Psi_{s} - \mathbf{P}_{-} \Psi_{s+1} - \mathbf{P}_{+} \Psi_{s-1} \right]$ • 5D Domain wall kernel:

with quark mass μ , and $D_{\pm} = a_5 D_w (-M) \pm 1$

Integrate out L_s-1 extra fields to obtain

$$D_{tov}(\mu; H) = \left\{ \mathcal{P}^{-1} \left[D^{(5)}(1) \right]^{-1} D^{(5)}(\mu) \mathcal{P} \right\}_{11}$$
$$= \frac{1}{2} \left[1 + \mu + (1 - \mu) \gamma_5 \varepsilon_{L_s/2}(a_5 H) \right]$$

• Here **P** is such that $(P^{-1} \Psi)_1 = q$ is the light fermion

Induced 4D action – truncated overlap

• Core piece of induced kernel:

$$D_{tov}(\mu; H) = \frac{1}{2} \left[1 + \mu + (1 - \mu)\gamma_5 \varepsilon_{L_s/2}(a_5 H) \right]$$
$$\varepsilon_{L_s/2}(a_5 H) = \frac{(1 + a_5 H)^{L_s} - (1 - a_5 H)^{L_s}}{(1 + a_5 H)^{L_s} + (1 - a_5 H)^{L_s}}$$
$$\sim \tanh(\frac{1}{2}a_5 L_s H) \stackrel{L_s \to \infty}{\to} \epsilon(a_5 H)$$

Two variants:

- Domain wall: $H = H_T = \gamma_5 D_w / (2 + a_5 D_w)$
- Overlap: $\lim a_5! 0 : H = H_w = \gamma_5 D_w$

Zero mode size distribution

- Size of zero modes at each crossing.
- Modes become small
- Upshot: large contamination from small quantum fluctuations

Main problem for chiral fermions

Improving the gauge action

- Gauge action improvements reduce fluctuations
- Comparison of density of small (near-zero) evs. p(0⁺) from H_w for various gauge actions
- DBW2 (renorm. group) smallest
- Asqtad noisy!
- Surprise! dyn. fermions induce fluctuations!
- Fermions screen β-func., hence gauge coupling runs more slowly to short distance
- Accuracy problem worse for dynamical chiral fermions!

Operator Locality

- Another sanity check:
 - Compute norm |D(x-y)|
 - A valid quantum field theory requires exp. falloff locality
 - Tests on 20³£32 lattice Asqtad lattice
 - Observe locality this addresses a concern about Asqtad locality

Induced quark mass dependence

- From 5D axial Ward identity, define an induced quark mass m_{res}
- Small modes in sign function induce chiral symmetry breaking
- We used Dirichlet BC see mode on boundary
- Consistency in m_{res} » exp(-const*L_s)

Dispersion Relation

- Pion computed at large momenta
- Test against both continuum and lattice dispersion relation
- Follows lattice dispersion relation

$$\frac{1}{4}\sinh^2\left(\frac{E_{\pi}(\vec{p})}{2}\right) = \frac{1}{4}\sin^2\left(\frac{\vec{p}}{2}\right) + \frac{1}{4}\sinh^2\left(\frac{E_{\pi}(0)}{2}\right)$$

Pion Correlation function

- Dirichlet BC: Source at t_i=10 (sink at t_f=21)
- DWF pion corr. shows odd behavior at t=10
- Originates from action not positive definite transfer matrix

"Decay" in Quenched Approximation

- Dramatic behavior in Isotriplet scalar particle $a_0!\eta\pi$ intermediate state
- Loss of positivity of a₀ propagator from missing bubble insertions

Bardeen, Duncan, Eichten, Thacker, 2000

Partially Quenched Singularity

- Non-positivity of a₀ correlator
- (Partially) Quenched singularity (still) present at $m_{\pi, \text{ valence}}a = m_{\pi, \text{ sea}}a$.
- Suggests not single staggered pion in chiral loops – taste breaking not neglible
- Need complete partial χPT
 - Vary valence and sea masses
 - Theory under development...

Quenched Wilson Results

- $F_{\pi}(Q^2,t)$ ratio plots
 - For heavy pions, there are nice wide plateaus
 - For lighter pions, plateaus start further from source
 - Best/Better interpolating field at high momenta $\bar{\psi}\gamma_4\gamma_5\psi$

Quenched Wilson Form Factor

Partially Quenched DWF Form Factor

• DWF $F_{\pi}(Q^2,t)$

- Smaller mass close to experimental VMD.
- Charge radius (crude analysis):

$$\frac{\partial F(Q^2)}{\partial Q^2}\Big|_{Q^2=0} = \frac{1}{6}\left\langle r^2 \right\rangle \quad \rightarrow \left\langle r^2 \right\rangle = \frac{6}{m_V^2}$$

- Exp. h $r^2i = 0.439(8) fm^2$, VMD ! $0.405 fm^2$
- Statistical: 0.226(15)fm², 0.304(18)fm² strong mass dependence

Rho!Pion Transition Form-Factor

- Electro-disintegration of deuteron intensively studied
 - Isovector exchange currents identified
 - Isoscalar exchange currents not clear
- $h \pi(p_f) |J_{\mu}| \rho_k(p_i) i ! V(Q^2)$
- Extracted coupling close to expt
- Need higher Q² to discern VMD

FIG. 3. The QL $\rho \pi \gamma$ (solid line) and $\omega \sigma \gamma$ (dashed line) form factors multiplied by Q^2 . The VDM form factor (dotted line) is shown for comparison.

Current Hardware

- 128-node myrinet, 01 SciDAC, ~ 100Gflops
 - P4, 2.0Ghz, 400Mhz FSB
 - MPI and QMP
- 256-node, 3D mesh gigE, 02 SciDAC ~ 100Gflops
 P4, 2.66Ghz, 533Mhz FSB
 - ONLY QMP uses VIA drivers lowers latency (15µ sec)
 - Config: 8-node (1D), 64-node (2D), 256node (3D)
- 20-node *spare* cluster, 100Mbit ethernet
 P4, 2.66GHz: 8-node 3D gigE test cluster
- http://www.jlab.org/hpc

Near Term Hardware

- 512-node, 3d gigE mesh
 - P4, 3.0Ghz, 800Mhz FSB (memory bus)
 - New SciDAC DWF inverter (A. Pochinsky) minimizes mem bus usage
 - Based on observed scaling from 533Mhz to 800Mhz mem bus, expect
 1 Tflop sustained

Conclusions

- Quenched Wilson $F_{\pi}(Q^2)$ decreases with pion mass, but undershoots.
 - Understood from O(a) scaling violations
- Partially quenched DWF $F_{\pi}(Q^2)$ also decreases with pion mass. Lowest mass agrees well with experiment up to 2 GeV^2
- Where is perturbative QCD?
- Have nearly completed a p_f=(1,1,0) for the lightest mass. Will get higher in Q².
- Still need partial quenching control
- In future might use a=0.09fm Asqtad lattices big boost in Q². Similarly for proton form-factor.