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OUTLINE

• Circumvent the Maini-Testa theorem by im-
posing anti-periodic boundary conditions
on the final-state pions.

• Use Lellouch-Lüscher to relate the finite
volume matrix elements with those at infi-
nite volume.

• Preliminary I = 2 phase shifts.

• Preliminary ∆I = 3/2 K-decay results.



G-parity Boundary Conditions

• G-parity operation on the pion:

G|π± > = −|π± >

G|π0 > = −|π0 >

• G-parity operation on the quark fields:
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• Must impose charge-conjugate boundary con-
ditions on the gauge field to preserve gauge
invariance.

• G-parity commutes with isospin but not with
the chiral generators.



H-parity Boundary Conditions

• H-parity operation on the quark fields
(definition):
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• H-parity operation on the pion:

H|π± > = −|π± >

H|π0 > = +|π0 >

• Iz = 2, π+π+ state contains anti-symmetric
pions with non-zero momenta.

• Not true for the I = 0 ππ state.

• No modification of the usual gauge configu-
rations is required— an advantage.
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Single Pion Result

1/a = 0.978(14)GeV, β =5.7, 83 × 32, Ls=10
Wilson gauge action, domain wall fermions

H-parity boundary conditions



Two-pion states and the
I = 2 phase shift

• Before studying K → ππ decays we examine
the I = 2 phase shift.

• We use Lüscher’s method to extract the phase
shift from the energy levels in a finite box.

nπ − δ0(k) = φ(q) q ≡ kL

2π

• The new boundary conditions modify only
the functional form of φ(q).



Some of the diagrams entering the
ππ − ππ propagator

Open: usual gauge links Uµ(x)

Shaded: charge-conjugate gauge links Uµ(x)∗
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1/a = 0.978(14)GeV, β =5.7, 83 × 32, Ls=10
Wilson gauge action, domain wall fermions

H-parity boundary conditions



Explanation of constant term
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A single pion propagates for all time:

G(t) ≈ e−mπ(T−t)e−mπt = e−mπT = e−2mπ
T
2



Fit including a constant
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1/a = 0.978(14)GeV, β =5.7, 83 × 32, Ls=10
Wilson gauge action, domain wall fermions

H-parity boundary conditions



G-parity boundary conditions
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1/a = 0.978(14)GeV, β =5.7, 83 × 32 and ×48
Ls=10, Wilson gauge action, domain wall
fermions, H-parity boundary conditions



Examine a larger 82 × 16 × 32 volume
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1/a = 0.978(14)GeV, β =5.7
82 × 16 × 32 and ×48, Ls=10

Wilson gauge action, domain wall fermions
G- and H-parity boundary conditions



Finite-volume sensitivity of G-parity

• G-parity allows color flux tube going from q
to q as well as q to q if it passes through the
boundary.

• Additional interactions between quarks and
their finite volume images.

• A single quark can propagate bound to its
image with energy increasing linearly with
the box size in the z direction:



I = 2 ππ phase shift results
(domain wall fermions)

Vol 1/a(GeV) #conf’s.
p = 250MeV
G-parity 82 × 16 × 32 0.978(14) 91
H-parity 82 × 16 × 32 0.978(14) 172

p = 450MeV
H-parity 83 × 32 0.978(14) 270
H-parity 163 × 32 1.98(3) 80

• Running parameters : Ls =10 , M5 =1.65



Results for δI=2
ππ
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K → (ππ)I=2 Decay

• Examine more recent results obtained over
the past year.

• Choose more realistic parameters.

• Use the simpler H-parity boundary condi-
tions.

• Examine matrix elements of the three
∆I = 3/2 operators between |K〉 and physical
|π(~p)π(−~p)〉 states.

• Adjust mK to achieve mK = Eππ.

• Show the character of data and errors as well
as preliminary, physically normalized results.



Simulation Parameters

• Lattice size: 163 × 32

• Pion mass: 352MeV

• Kaon mass: 712MeV - 1290MeV

• Lattice spacing: a−1=1.3GeV

• Action: DBW2

• Number of Configurations: 129

• Domain Wall Fermions: M5=1.8, Ls=12

• Resulting kinematics:

mK mπ pπ

Simulation 910 MeV 352 MeV 290 MeV
Nature 496 MeV 138 MeV 206 MeV



ππ effective mass
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ππ energy
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π − π phase shifts
(preliminary)
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Operators with ∆I = 3/2 and H-parity

• Kaon isospin : Iz = 1/2.

• ππ state with relative momentum under H-
parity : Iz = 2.

• No terms in the effective Hamiltonian have
∆Iz = 3/2.

• Use Wigner-Eckart theorem:
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Iz=1/2|ππ〉 =
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Normalized matrix elements of
lattice operators

Evaluate three Greens functions in the
usual way:

lim
tππ�t�tK

G(ππ) O K(t) → 〈0|Pππ|π+π+〉〈π+π+|O|K+〉〈K+|PK|0〉

e−mK(t−tK)e−Eππ(tππ−t)

lim
tππ�0

G(ππ) (ππ)(tππ) → 〈0|Pππ|π+π+〉〈π+π+|Pππ|0〉e−Eππ(tππ)

lim
tK>0

GK K(tK) → 〈K+|PK|0〉〈0|PK|K+〉e−mK(tK)



Effective mass difference from
GππO27K
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O27 matrix element versus Kaon mass
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O(8,8) matrix element versus Kaon
mass
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O
(8,8)
m matrix element versus Kaon

mass
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Interpolated lattice matrix elements
(preliminary)

O27 O(8,8) O(8,8)
m

0 -1.230(24)e-2 -8.22(17)e-2 -2.989(59)e-1

π/16 -2.114(60)e-2 -6.88(23)e-2 -2.815(85)e-1√
2π/16 -2.16(12)e-2 -3.89(40)e-2 -1.82(13)e-1√
3π/16 -2.30(35)e-2 -1.8(10)e-2 -1.40(32)e-1



Next steps

• Apply Lellouch-Lüscher finite-volume correc-
tion.

• Compute NPR renormalization matrix for
1/a = 1.3GeV case.

• Evaluate needed Wilson coefficients.

• Extract physically normalized matrix elements.



Conclusion and Outlook

• Calculation of ∆I = 3/2 amplitudes is
practical with an on-shell π-π final state.
For physical mK and mπ:

– 1/a = 1.3 GeV, a = 0.15 fm.

– L = 32, ≈ 4.9 fm, ≈ 3.5/mπ.

– Impose anti-periodic conditions on two (p = 180

MeV) and three (p = 221 MeV) faces (pphys = 205

MeV).

• Calculation of ∆I = 1/2 amplitudes is possible
using G-parity boundary conditions.

1. Quenched calculations are not possible because

zero-momentum, η′-η′ states will dominate.

2. Charge conjugation of the gauge fields on the

boundary requires special configurations.

3. Decay to the vacuum is allowed and must be

subtracted.

• Using a K-meson with ~p 6= 0 (Rummukainen-
Gottlieb) would address 2. and 3. above.


