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Introduction

Before Jan’03, any hadron can be interpreted as a bound

state of 3 quarks (baryon) or 2 quarks (meson).

However, in Jan’03, the exotic baryon Θ+(1540)

(with the quantum numbers of K+n) was

observed by LEPS collaboration at SPring-8.

Later it was confirmed by some expt. groups.

The remarkable features of Θ+(1540):

(i) S = +1 implies min. quark content ududs̄.

(ii) decay width < 15 MeV, but its mass is 105

MeV above KN threshold.

However, there are quite a number of expt.

which so far have not observed Θ+(1540) or

any pentaquarks !
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In Oct’03, NA49 group at CERN has observed

another exotic baryon Ξ−−
3/2

(1862) (with the

quantum numbers of Ξ−π−, and Γ < 18 MeV),

and two iso-partners, Ξ−
3/2

and Ξ0
3/2. Their

quark contents are dsdsū, dsusū, dsusd̄.

In Mar’04, H1 collaboration at HERA has ob-

served a narrow resonance Θc(3099) (with the

quantum numbers of D∗−p, and Γ < 15 MeV).

Its minimal quark content is ududc̄. It is the

first exotic baryon with c̄, implying the exis-

tence of other exotic baryons with heavy quarks.

However, Ξ−−
3/2

or Θc has not been seen by

other experiments.
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Historically, the exp. search for Θ+(1540) was

motivated by the predictions of the chiral-soliton

model [Diakonov,Petrov,Polyakov,’97], an outgrowth

of the Skyrme model.

Even though the chiral solition model seems to

provide very close predictions for the mass and

the width of Θ+(1540), obviously, it cannot

reproduce all aspects of QCD.

Theoretically, the central question is whether

the spectrum of QCD possesses 5Q baryons,

with the correct quantum numbers, masses,

and decay widths.
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At present, the most viable approach to solve

QCD nonperturbatively from first principles is

lattice QCD.

In practice, one uses an interpolating op. which

has a significant overlap with the pentaquark

baryon states. Then compute time-correlation

function of this operator, and from which to

extract the mass of its even/odd parity state.

The diquark-diquark-antiquark [Jaffe & Wilzcek,’03]

picture has been useful in constructing the

inter. op. (source) for pentaquark baryons.
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The eff. int. bet. two light quarks via 1-gluon exch.

Heff ∼ −(~λ1 · ~λ2)(~σ1 · ~σ2) = 4P f
12 +

4

3
P s

12 + 2P c
12 − 2

3

where ~σi and ~λi are spin and color op. of the quark, and
P f

12, P s
12 and P c

12 are flavor, spin and color exchange op.

P f
12 = (2 + 3 ~β1 · ~β2)/6

P s
12 = (1 + ~σ1 · ~σ2)/2

P c
12 = (2 + 3 ~λ1 · ~λ2)/6

P f
12P

s
12P

c
12 = −1

flavor spin color δE
6s 1a 6s 4
6s 3s 3̄a 8/3
3̄a 3s 6s −4/3
3̄a 1a 3̄a −8

Salient features of diquark correl. seem to persist even

at the hardronic scale where QCD is strongly coupled.
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In Jaffe-Wilzcek model, diquark transforms like

spin singlet (1s), color anti-triplet (3̄c), and

flavor anti-triplet 3̄f = {ud, ds, us}.

Then pentaquark baryons with light quarks

emerge as the color singlet in

(3̄c × 3̄c) × 3̄c = 1c + 8c + 8c + 10c

and flavor multiplets in

(3̄f × 3̄f) × 3̄f = (1f + 8f) + 8f + 10f

If the light antiquark is replaced with heavy c̄

or b̄, then the flavor multiplets are reduced to

the triplet (3f) and the antisextet (6̄f).
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For lattice QCD, one has options to use a local

or smeared source for any baryon, provided its

correlation function has a significant overlap

with the baryon state.

First, to construct local diquark op. [ud] as

[uTΓd]xa ≡ εabc(uxαbΓαβdxβc − dxαbΓαβuxβc)

where Γαβ = −Γβα such that the diquark op.

transforms like a scalar or pseudoscalar.

(i) Scalar: Γ = Cγ5, C is the charge conj. op.

(ii) Pseudoscalar: Γ = C.
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Then local source for diquark-diquark-antiquark
can be written as [Sugiyama et al, ’03; Sasaki ’03]

Θxα = εcde [uT(Cγ5)d]xd [uTCd]xe (C s̄
T)xαc

(Ξ−−
3/2

)
xα

= εcde [dT(Cγ5)s]xd [dTCs]xe (Cū
T)xαc

(Θc)xα = εcde [uT(Cγ5)d]xd [uTCd]xe (Cc̄
T)xαc

while the 3-quark baryon (e.g., Proton) as

Pxα = [uT (Cγ5)d]xauxαa

Note that for Θ,Ξ−−
3/2

or Θc which is composed

of two identical diquarks, one cannot choose

both diquark operators to be (pseudo-)scalar,

otherwise the interpolating op. is identically

zero since diquarks are bosons.
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Thus when the orbital angular momentum of

this scalar-pseudoscalar-antifermion system is

zero (i.e., the lowest lying state), its parity is

even rather than odd.

Alternatively, if these two diquarks are located

at two different sites, then both diquark op.

can be chosen to be scalar, however, they must

be antisym in space, L = odd integer. Thus

the parity of lowest lying state of this scalar-

scalar-antifermion system is even, as suggested

in the Jaffe-Wilzcek model.
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Three different sources for Θ+(ududs̄)

(O1)xα = [uTCγ5d]xc {(̄sxeγ5uxe)(γ5d)xαc − (̄sxeγ5dxe)(γ5u)xαc}
(O2)xα = [uTCγ5d]xc {(̄sxeγ5uxc)(γ5d)xαe − (̄sxeγ5dxc)(γ5u)xαe}
(O3)xα = εcde[u

TCγ5d]xc[u
TCd]xd(C s̄

T)xαe

where [uTΓd]xa ≡ εabc{uxαbΓαβdxβc − dxαbΓαβuxβc}
O1 is kaon ⊗ nucleon operator [Mathur et al.’03]

O2 is a variant of O1 [Zhu’03, Csikor et al.’03]

O3 is the diquark-diquark-antiquark [Sugiyama et al.’03,

Sasaki ’03]

3 × 3 Correlation Matrix

C±
ij(t) =

∑

~x

tr

[

1 ± γ4

2
〈Oi(~x, t)Ōj(~0,0)〉

]

C±(t) = {C±
ij(t)}

diagonalization−→ {A±
i (t)} −→ {m±

i }
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Computation of Quark Propagators

The time correlation function

Cij(t) =
∑

~x

〈Oi(~x, t)Ōj(~0,0)〉

can be expressed in terms of quark prop.

(tedious ! a lot of terms !)

In lattice QCD with exact chiral symmetry,

quark propagator is of the form (Dc + mq)−1

where Dc is exactly chirally sym. for any finite

lattice spacing [TWC,’98], and

(Dc + mq)
−1 → [γµ(∂µ + iAµ) + mq]

−1

in the continuum limit.
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For Optimal Domain-Wall Fermion [TWC,’02,’03]
with Ns + 2 sites in the fifth dimension,

Dc = 2m0
1 + γ5S(Hw)

1 − γ5S(Hw)

S(Hw) =
1 −

∏Ns

s=1 Ts

1 +
∏Ns

s=1 Ts

Ns→∞−→ Hw
√

H2
w

⇒ Dcγ5 + γ5Dc = 0

Ts =
1 − ωsHw

1 + ωsHw
, Hw = γ5Dw,

where Dw is the Wilson Dirac op. plus a neg.
parameter −m0 ∈ (−2,0), and {ωs} are a set of
weights specified by an exact formula such that
Dc possesses the optimal chiral sym for any
given Ns and gauge background [TWC,’02,’03]

ωs =
1

λmin

√

1 − κ′2sn2(vs;κ′), s = 1, · · · , Ns

ω0 = ωNs+1 = 0

13



Since

(Dc + mq)
−1 =

(

1 − mq

2m0

)−1 [

D−1(mq) −
1

2m0

]

where

D(mq) = mq + (m0 − mq/2)[1 + γ5S(Hw)],

thus the quark propagator can be obtained by

solving the system D(mq)Y = 1I with nested

conjugate gradient, which turns out to be highly

efficient (in terms of precision of chirality vs.

CPU time and memory storage) if the inner CG

loop is iterated with Neuberger’s double pass

algorithm. [Neuberger,’98, TWC & Hsieh,’03]
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We generate 100 gauge confs with Wilson gauge

action at β = 6.1 on 203 × 40 lattice.

Fixing m0 = 1.3, we project out 16 low-lying

eigenmodes of |Hw| and perform the nested

conjugate gradient in the complement of the

vector space spanned by these eigenmodes.

For Ns = 128, the weights {ωs} are fixed with

λmin = 0.18 and λmax = 6.3, where λ(|Hw|) ∈
[λmin, λmax] for all gauge configurations (after

projection of low-lying eigenmodes).
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For each configuration, quark propagators are computed
for 30 bare quark masses in the range 0.03 ≤ mqa ≤ 0.8
with stopping criteria 10−11 and 2× 10−12 for the outer
and inner conjugate gradient loops respectively. Then
the norm of the residual vector of each column of the
quark propagator is less than 2 × 10−11

||(Dc + mq)Y − 1I|| < 2 × 10−11,

and the chiral symmetry breaking due to finite
Ns(= 128) is less than 10−14,

σ =

∣

∣

∣

∣

Y †S2Y

Y †Y
− 1

∣

∣

∣

∣

< 10−14,

for every iteration of the nested CG.

The quark propagators are computed by a Linux PC

cluster (with 100 nodes), in which each node computes

1 column for 30 quark masses simultaneously.
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Determination of a−1 and ms

We measure the pion time correlation function

Cπ(t) =
∑

~x

tr
{

γ5(Dc + mq)
−1(0, x)γ5(Dc + mq)

−1(x,0)
}

=
∑

~x

tr
{[

(Dc + mq)
−1ab

αβ(x,0)
]∗

(Dc + mq)
−1ab

αβ(x,0)
}

and its average over gauge confs is then fitted by

Z

2mπa
[e−mπat + e−mπa(T−t)]

to extract pion mass mπa and decay constant

fπa = 2mqa

√
Z

(mπa)2
.
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Determine lattice spacing a from pion decay constant.

The data of fπa vs. mqa can be fitted by

fπa = 0.060(1) + 0.205(14)× (mqa) (1)

Taking fπa at mqa = 0 equal to 0.132 GeV times a, we
can determine the lattice spacing a,

a−1 =
0.132

f0

= 2.20(1) (GeV)

a = 0.089(1) fm

m
qa

0.00 0.02 0.04 0.06 0.08 0.10

fπa

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

203 x 40
Wilson β=6.1
100 config.

fπa = 0.060(1) + 0.205(14) (mqa)

mqa

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
0.00

0.05

0.10

0.15

0.20

0.25

(m
πa

)2

203 x 40
Wilson β=6.1
100 config.

0.162
A = 0.697
B = 2.219

(mπa)2 = A (mqa)1/(1+δ) + B (mqa)2

=δ
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The bare mass of strange quark is determined by
extracting the mass of vector meson from

CV (t) =
1

3

3
∑

µ=1

∑

~x

tr{γµ(Dc + mq)
−1
x,0γµ(Dc + mq)

−1
0,x}

At mqa = 0.06, MV a =
0.4638(32), which gives
MV = 1025(7) MeV, in
good agreement with the
mass of φ(1020). Thus we
take msa = 0.06. Then
we have 6 quark masses
smaller than ms, i.e., mqa
= 0.03, 0.035, 0.04, 0.045,
0.05, 0.055.
Here we work in the isospin
limit mu = md.

m�(GeV)

0.22 0.44 0.67 0.89 1.11 1.33

m
�
(G

eV
)

0.89

1.11

1.33

1.56

203 x 40
Wilson, �=6.1
100 confs.

m�a = C0+�C1/2(m�a)+C1(m�a)
2

+C3/2(m�a)
3

C0 = 0.428(2)

�C1/2 = -0.251(16)
C1 = 1.610(45)

C3/2 = -0.762(42)
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Mass Spectrum of 3×3 Correlation Matrix

C±
ij(t) =

∑

~x

tr

[

1 ± γ4

2
〈Oi(~x, t)Ōj(~0,0)〉

]

C±(t) = {C±
ij(t)}

diagonalization−→ {A±
i (t)} −→ {m±

i }

(1) Lowest-lying state with JP = 1/2+

The effective mass attains a plateau for t ∈
[9,14]. Its mass can be extracted by single

exp fit. It behaves like usual resonances

encountered in quenched lattice QCD.
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(2) Lowest lying state with JP = 1/2−

The Meff decreases monotonically, no plateaus.

This implies that it is very unstable, and de-

cays rapidly into two or many particles. So its

decay width must be very large ! [Note that

the S-wave of (ududs̄) can easily fall apart into

K+ and n !]

To estimate the lower bound of its width by

comparing its A(t) and Meff(t) with those of

the excited state (JP = 1/2−) of nucleon, N∗(1535)
which has Γ ∼ 100 − 200 MeV.
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mua = 0.1
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(3) First Excited State with JP = 1/2−

The A−(t) and the effective mass of the first

excited state with JP = 1/2− are similar to

those of the lowest lying state. This rules out

the possibility that the negative parity channel

of (ududs̄) could be a candidate for Θ+ (with

width < 15 MeV).
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Mass of lowest lying state with JP = 1/2−

Assuming the mass of a resonance can be

estimated by single exp fit to the central region

of t where Meff attains a quasi-plateau, one

can extract the masses of JP = 1/2− states

from {A−(t),10 ≤ t ≤ 15}.

Using the 4 smallest masses for linear extrap.

to mπ = 135 MeV, we obtain M1/2− = 1433(57)

MeV, which is close to mK +mN = 1430 MeV.

This seems to suggest that it may be a weakly

bound two particle system, or even the KN

scattering state.
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Masses of lowest lying and 1st excited state

with JP = 1/2+

All masses are obtained by single exp fit:

t ∈ [8,13] for the lowest lying ones

t ∈ [7,10] for the first excited ones

Using the four smallest masses (i.e., with mua =

0.03,0.035,0.04,0.045) for linear extrapolation

to mπ = 135 MeV, we obtain the mass of the

lowest lying JP = 1/2+ state:

M1/2+ = 1583 ± 121 MeV
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(a) The masses of the lowest JP = 1/2− state. The
solid line is the linear fit using four smallest masses. (b)
The masses of the lowest and the first excited state
with JP = 1/2+. The solid lines are linear fits using
four smallest masses.
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Concluding Remarks

Computed 3×3 correl matrix of 3 different interpolating
op for Θ+, and obtain eigenvalues {A±

i (t)} for ± parity.

For JP = 1/2− states, A−(t) deviates from pure exp
decay even at large t, and Meff(t) decays monotonically.
Thus it cannot be a resonance with narrow decay width,
and is ruled out as a candidate of Θ+(1540).

For JP = 1/2+ states, A+(t) behaves like usual
resonances seen in quenched lattice QCD. The mass
of the lowest lying JP = 1/2+ state is determined to be
1583±121 MeV, in agreement with Θ+(1540). Whether
one can identify this state with Θ+(1540) depends on
whether its Γ could turn out to be as small as 20 MeV.

The remaining challenge is to determine its decay width,
in which the incorporation of dynamical quarks seems to
be crucial.
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