Mobius Fermions

Improved DW Chiral Fermions

Sept 22, ILFT04 Shuzenji, Japan

Richard C. Brower

RCB, Hartmut Neff and Kostas Orginos

Outline

Chiral Breaking Operator For Overlap

Approximate Ginsparg-Wilson relation:

$$\gamma_5 D_{ov}(0) + D_{ov}(0)\gamma_5 - 2D_{ov}(0)\gamma_5 D_{ov}(0) = 2\gamma_5 \Delta_L$$

V

$$\Delta_L = \frac{1}{4}(1 - \epsilon_L^2(H))$$

Breaking term in Neother theorem:

y

$$(1-m)^{-1}\delta(\bar{\psi}D_{ov}(m)\psi) = m_q\bar{\psi}(\gamma_5+\hat{\gamma}_5)\psi+2\bar{\psi}\gamma_5\Delta_L\psi$$
$$m_q = m/(1-m) \quad \text{and} \quad \hat{\gamma}_5 = \gamma_5(1-2D_0) = -\epsilon_L(H)$$

Chiral breaking operator, $\Delta_L(x,y)$, is "local", not <u>ultra</u> local.

Overlap Solutions to GW Relation

D_{wilson}(-4) Free Eigenvalues

 $W(p) = M_5 + (1 - \cos(p_{\mu}))$

<u>What is the best way to exploit the 5th time axis?</u>

DW Construction: Shamir vs Borici

Shamir:
$$D(M_5) = \frac{a_5 D_w(M_5)}{2 + a_5 D_w(M_5)}$$

or Borici:
$$D(M_5) = a_5 D_W(M_5)$$

where the standard Wilson 4-d operator is

$$D_w(M) = (4+M_5)\delta_{x,y} - \frac{1}{2}\sum_{\mu=1}^4 \left[(1-\gamma_\mu)U_\mu(x)\delta_{x+\mu,y} + (1+\gamma_\mu)U_\mu^{\dagger}(y)\delta_{x,y+\mu} \right]$$

implies

$$\epsilon_{L_s}[H] = \frac{T^{-L_s} - 1}{T^{-L_s} + 1}$$
 with $T = \frac{1 - H}{1 + H}$, $H \equiv \gamma_5 D(M)$

Mobius Generalization

$$D_{Mobius}(M_5) = \frac{a + b D_w(-1)}{c + d D_w(-1)}$$
$$\equiv \frac{(b_5 + c_5)D_w(M_5)}{2 + (b_5 - c_5)D_w(M_5)}$$

Parameters: M_5 , $a_5 = b_5 - c_5$ and scale: $\alpha = b_5 + c_5$

- **M**₅ sets the zero for $H = \gamma_5 D(M)$
- **a**₅ moves the doublers down
- NEW α slides e.v. in the window $1 \epsilon_L[H]$

Domain Wall Implementation

Mobius generalization of Shamir/Borici

Standard LDU \rightarrow 4-d Overlap Form

Define Boundary fields at $s = 1, L_s$

$$q_x = P_- \Psi_{x,1} + P_+ \Psi_{x,L_s}$$

$$\bar{q}_y = -[\bar{\Psi}_1 D_-^{(1)}]_y P_+ - [\bar{\Psi}_{L_s} D_-^{(L_s)}]_y P_-$$

$$\langle q_x \bar{q}_y \rangle = \frac{1}{1-m} [D_{ov}^{-1}(m) - 1]_{xy}$$

$$D_{ov} \equiv D_4^{-1}(1)D_4(m) = \left[\frac{1+m}{2} + \frac{1-m}{2}\gamma_5 \frac{T^{-L_s} - 1}{T^{-L_s} + 1}\right]$$

where $T^{-L_s} \equiv T_1^{-1}T_2^{-1}\cdots T_{L_s}^{-1}$

 $\epsilon_{L}[H]$

Edwards & Heller use "Standard" UDL decomposition

Step #1: Prepare the Pivots by Permute Columns

$$P = \begin{bmatrix} P_{-} & P_{+} & 0 & 0\\ 0 & P_{-} & P_{+} & 0\\ 0 & 0 & P_{-} & P_{+}\\ P_{+} & 0 & 0 & P_{-} \end{bmatrix}$$

Step #2: Do Gaussian Elimination to get U matrix

$$U = \begin{bmatrix} 1 & -T_1^{-1} & -T_1^{-1}T_2^{-1} & -T_1^{-1}T_2^{-1}T_3^{-1} \\ 0 & 1 & -T_2^{-1} & -T_2^{-1}T_3^{-1} \\ 0 & 0 & 1 & -T_3^{-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step #3 Back substitution to get L matrix

$$L(m) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -T_2^{-1}T_3^{-1}T_4^{-1}c_+ & 1 & 0 & 0 \\ -T_3^{-1}T_4^{-1}c_+ & 0 & 1 & 0 \\ -T_4^{-1}c_+ & 0 & 0 & 1 \end{bmatrix}$$

where

$$Q_{-}^{-1} = Diag[(Q_{-}^{(1)})^{-1}(Q_{-}^{(2)})^{-1}(Q_{-}^{(3)})^{-1}(Q_{-}^{(4)})^{-1}]$$

$$Q_{-}^{(s)} = \gamma_5 [D_{-}^{(s)} P_+ + D_{+}^{(s)} P_-] \quad c_- = P_- - mP_+$$
$$Q_{+}^{(s)} = \gamma_5 [D_{+}^{(s)} P_+ + D_{-}^{(s)} P_-] \quad c_+ = P_+ - mP_-$$

Generalized γ_5 Hermiticity and All That

• To get all the nice identities for Borici, Chiu and Mobius

$$\begin{split} D_{DW} &= D_{-} \times \widetilde{D}_{DW} \equiv \\ \begin{bmatrix} D_{-}^{(1)} & 0 & 0 & 0 \\ 0 & D_{-}^{(2)} & 0 & 0 \\ 0 & 0 & D_{-}^{(3)} & 0 \\ 0 & 0 & 0 & D_{-}^{(4)} \end{bmatrix} \times \begin{bmatrix} D_{+}^{(1)}/D_{-}^{(1)} & P_{-} & 0 & -mP_{+} \\ P_{+} & D_{+}^{(2)}/D_{-}^{(2)} & P_{-} & 0 \\ 0 & P_{+} & D_{+}^{(3)}/D_{-}^{(3)} & P_{-} \\ -mP_{-} & 0 & P_{+} & D_{+}^{(4)}/D_{-}^{(4)} \end{bmatrix} \end{split}$$

So $\mathcal{R}D_{-}\gamma_{5}$ acts like the DW "gamma 5"
 $\gamma_{5}\mathcal{R}\widetilde{D}_{DW} = \widetilde{D}_{DW}^{\dagger}\gamma_{5}\mathcal{R}.$

Standard Even/Odd → 5d Checker board

Fails for Borici Form $b_5 > 0$

Modified Even/Odd → 4-d Checkerboard

Even/Odd Partition of Matrix

$$D_w(M) = \begin{bmatrix} I_{ee} & D_{eo}^{DW'} \\ D_{oe}^{DW'} & I_{oo} \end{bmatrix}$$

 I_{ee} and I_{oo} SHOULD be simple to invert

The Schur decomposition

$$D_w(M) = \begin{bmatrix} 1 & 0 \\ D_{oe}^{DW'} I_{ee}^{-1} & 1 \end{bmatrix} \begin{bmatrix} I_{ee} & 0 \\ 0 & I_{oo} - D_{oe}^{DW} I_{ee} D_{eo}^{DW} \end{bmatrix} \begin{bmatrix} 1 & I_{ee}^{-1} D_{eo}^{DW} \\ 0 & 1 \end{bmatrix}$$
$$D_{preconditioned}^{DW} = 1 - I_{oo}^{-1} D_{oe}^{DW} I_{ee}^{-1} D_{eo}^{DW}$$

On $16^3 \times 32$, $\beta = 6.0$ lattice

- For Shamir: Both 4-d & 5-d Even/Odd give » 2.7 speed up.
- For Borici: Even/Odd gives » 2.7 speed up

Ward Takashi Identity For Domain Wall

$$\Delta_{\mu} J^{a,DW}_{\mu}(x) = 2m \,\bar{q}_x \lambda^a \gamma_5 q_x + 2\bar{Q}_x \gamma_5 \lambda^a Q_x$$

<u>Noether's Theorem:</u> <u>Rotate LEFT exp[i $\theta_{\underline{x}}$] & RIGHT exp[-i $\theta_{\underline{x}}$]</u>

•Is this breaking term UNIQUE? •Is it the same as the overlap operators $\Delta_L(x)$?

Nice Definition of Overlap Axial Current:

$$\langle J_{\mu}(x)\psi_{y}\bar{\psi}_{z}
angle_{c}\equiv(1-m)\langle J_{\mu}^{DW}(x)q_{y}\bar{q}_{z}
angle_{c}$$

Split Screen Correlators

Split Screen Propagators

$$\langle Q_s \bar{q} \rangle = \frac{T_{s+1}^{-1} \cdots T_{L_s}^{-1}}{1 + T^{-L_s}} D_{ov}^{-1}(m)$$

$$\langle q \bar{Q}_s \rangle = D_{ov}^{-1}(m) \gamma_5 \frac{1}{1 + T^{-L_s}} [T_1^{-1} \cdots T_s^{-1}] \gamma_5$$

where s = M plane

$$Q_{s} = P_{-}\Psi_{s+1} + P_{+}\Psi_{s}$$

$$\bar{Q}_{s} = -\bar{\Psi}_{s+1}D_{-}^{(L_{s}/2+1)}P_{+} - \bar{\Psi}_{L/2}D_{-}^{(s)}P_{-}$$

^y if $s = L_s/2$: $\gamma_5 \langle Q_s \bar{q} \rangle^{\dagger} \gamma_5 = \langle q \bar{Q}_s \rangle$

(See Kikukawa and Noguchi, hep-lat/99902022)

Measuring the Operator Δ_{Ls}

(use Plateau region away from sources)

$$m_{res}(t) \equiv \frac{\sum_{x} \langle \bar{Q}_{t,x} \gamma_5 Q_{t,x} \ \bar{q}_0 \gamma_5 q_0 \rangle_c}{(1-m)^2 \sum_{x} \langle \bar{q}_{t,x} \gamma_5 q_{t,x} \ \bar{q}_0 \gamma_5 q_0 \rangle_c}$$

Sum over t \rightarrow Measure Matrix element of Δ_L operator

$$m_{res} \equiv \frac{Tr[\Delta_L(H)D_{ov}^{-1}D_{ov}^{\dagger-1}]}{Tr[D_{ov}^{-1}D_{ov}^{\dagger-1}]} = \sum_{\lambda} \rho(\lambda) \Delta_L(\lambda)$$

 $|\lambda >$ in the Eigen basis of H = γ_5 D(-M)

Model for m_{res} dependence on L_s

$$m_{res} = \sum_{\lambda} \rho(\lambda) \Delta_L(\lambda) \qquad
ho(\lambda) = rac{\langle \lambda | G_{ov} G_{ov}^{\dagger} | \lambda \rangle}{\sum_{\lambda} \langle \lambda | G_{ov} G_{ov}^{\dagger} | \lambda
angle} \ge 0$$

$$\Delta_L(\lambda) = \langle \lambda | \Delta_L(H) | \lambda \rangle = \frac{4}{2 + [\frac{1+\lambda}{1-\lambda}]^{-L} + [\frac{1+\lambda}{1-\lambda}]^L} \ge 0$$

$$\to e^{-L \log[(1+\lambda)/(1-\lambda)]} \quad \text{for } O(L^{-1}) < \lambda < O(L)$$

Scaling Model: Assume that $\rho(\lambda)$ has negligible dependence on α and L_s

$$m_{res}\simeq\int dn(\lambda)\;
ho(\lambda)\;\Delta_L(lpha\lambda)$$

$$m_{res} \equiv \frac{\sum_{x} \langle \bar{Q}_{x} \gamma_{5} Q_{x} \ \bar{q}_{0} \gamma_{5} q_{0} \rangle_{c}}{(1-m)^{2} \sum_{x} \langle \bar{q}_{x} \gamma_{5} q_{x} \ \bar{q}_{0} \gamma_{5} q_{0} \rangle_{c}} \Rightarrow$$

$$\frac{\sum_{x} Tr[\langle Q_x \bar{q}_0 \rangle \gamma_5 \langle q_0 \bar{Q}_x \rangle \gamma_5]}{(1-m)^2 \sum_{x} Tr[\langle q_x \bar{q}_0 \rangle \gamma_5 \langle q_0 \bar{q}_x \rangle \gamma_5]} = \frac{\sum_{x} Tr[\Delta_{xy}^R \langle q_y \bar{q}_0 \rangle \langle q_z \bar{q}_0 \rangle^{\dagger} \Delta_{zx}^L]}{\sum_{x} Tr[\langle q_x \bar{q}_0 \rangle \langle q_x \bar{q}_0 \rangle^{\dagger}]}$$

1-

$$=\frac{\sum_{zy}\langle \bar{q}_z\gamma_5\Delta_{zy}q_y\;\bar{q}_0\gamma_5q_0\rangle}{\sum_x\langle \bar{q}_x\gamma_5q_x\;\bar{q}_0\gamma_5q_0\rangle}=\frac{Tr[\Delta_L D_{ov}^{-1}D_{ov}^{\dagger-1}]}{Tr[D_{ov}^{-1}D_{ov}^{\dagger-1}]}\simeq\frac{\langle 0|\bar{q}\gamma_5\Delta q|\pi\rangle}{\langle 0|\bar{q}\gamma_5q|\pi\rangle}$$

where

$$\Delta^{L} \Delta^{R} = \frac{(T_{Ls/2+1}..T_{L_{s}})^{-1}}{1+T^{-L_{s}}} \times \frac{(T_{1}..T_{L_{s}/2})^{-1}}{1+T^{-L_{s}}}$$
$$= \frac{T^{-L_{s}}}{(1+T^{-L_{s}})^{2}} = \frac{1}{2+T^{L_{s}}+T^{-L_{s}}} = \Delta_{L_{s}}$$

M_{res} is Good Measure of Chiral Symmetry

- M_{res} is independent of Placement of Split Screen
- $\Delta_{\rm L}$ is local positive definite operator.
- $m_{res} = 0 \rightarrow GW$ and Chiral Symmetry is EXACT
- Low energy matrix elements of Δ_L correct the effective Chiral Lagrangian. To leading O(a) this is a just a shift in the quark mass.

Preliminary Performance Tests

- 20 NERSC Gauge lattices: $16^3 \times 32$ at $\beta = 6.0$
- Set $m_q = 0.06$ for Shamir ($a_5 = 1, M_5 = 1.8$)
- As you vary M_5 and $\alpha = b_5 + c_5$ to fixed m_{π}

Shamir vs Mobius

mres

mres

Future Refinements and Projects

- Further tuning in M_5 , a_5 and scale parameters
- Heuristic for m_{res} : Error $|1 \epsilon_L(\lambda)|$ for lowest e.v.?
- Test on HMC Lattices (RBC collaboration)
- Next to nearest neighbor ?
- Multi-grid in L_s ? (with C. Rebbi & David Keyes)

mres

Low Statistics Large L_s Behavior

