B Physics with NRQCD Heavy

and AsqTad Light Quarks

```
A.Gray, E.Gulez, J.S. (Ohio State)
C.Davies, A.Dougall, E.Gamiz (Glasgow)
P.Lepage (Cornell)
M.Wingate (Seattle)
```

Good progress in recent years in Lattice simulations of heavylight systems.

- More and more unquenched simulations using for instance the $N_{f}=2+1$ MILC configurations
- Use of AsqTad improved staggered light quarks has led to considerable reduction in chiral extrapolation uncertainties.

Outline

- Formalism
- Perturbative Matching and Dim. 4 Current Corrections
- Decay Constants
- Semi-leptonic Form Factors
- Future Plans

Formalism

Symmetries of staggered or naive fermions are well documented in the literature, especially within the context of light quark physics.

The situation is simpler for heavy-light systems, if the heavyquark action has no doublers as in NRQCD, or only heavy doublers as with Fermilab heavy quarks.

The free naive fermion action (unimproved for simplicity) is given by,

$$
\mathcal{S}_{0}=a^{4} \sum_{x}\left\{\bar{\Psi}(x)\left[\sum_{\mu} \gamma_{\mu} \frac{1}{a} \nabla_{\mu}+m\right] \Psi(x)\right\}
$$

with

$$
\nabla_{\mu} f(x)=\frac{1}{2}\left[f\left(x+a_{\mu}\right)-f\left(x-a_{\mu}\right)\right]
$$

The naive action has a set of 16 discrete "doubling symmetries",

$$
\begin{aligned}
& \Psi(x) \rightarrow e^{i x \cdot \pi_{g}} M_{g} \Psi(x) \\
& \bar{\Psi}(x) \rightarrow e^{i x \cdot \pi_{g}} \bar{\Psi}(x) M_{g}^{\dagger}
\end{aligned}
$$

" g " is an element of the set, G, of ordered sets of indices.

$$
G=\left\{g: g=\left(\mu_{1}, \mu_{2}, \ldots\right), \mu_{1}<\mu_{2}<\ldots\right\}
$$

and π_{g} is the 4-vector,

$$
\left(\pi_{g}\right)_{\mu}= \begin{cases}\frac{\pi}{a} & \mu \in g \\ 0 & \text { otherwise }\end{cases}
$$

The M_{g} are transformation matrices,

$$
M_{g}=M_{\mu_{1}} M_{\mu_{2}} \cdots, \quad \quad \mu_{i} \in g
$$

with

$$
M_{\mu}=i \gamma_{5} \gamma_{\mu}
$$

Momentum Space Naive Fermions

$$
\mathcal{S}_{0}=\int_{k, D} \bar{\psi}(k)\left[\sum_{\mu} i \gamma_{\mu} \frac{1}{a} \sin \left(k_{\mu} a\right)+m\right] \psi(k)
$$

Using the 4-vectors π_{g} this can be written as,

$$
\begin{array}{r}
\mathcal{S}_{0}=\sum_{g} \int_{k, D_{\emptyset}} \bar{\psi}\left(k+\pi_{g}\right)\left[\sum_{\mu} i \gamma_{\mu} \frac{1}{a} \sin \left(\left[k+\pi_{g}\right]_{\mu} a\right)\right. \\
+m] \psi\left(k+\pi_{g}\right)
\end{array}
$$

D denotes the full Brillouin zone, $-\frac{\pi}{a} \leq k_{\mu}<\frac{\pi}{a}$, and D_{\emptyset} just the central region, $-\frac{\pi}{2 a} \leq k_{\mu}<\frac{\pi}{2 a}$.

The next step is to define 16 new momentum space spinors $q^{g}(k)$ labeled by the elements g of the set G.

$$
q^{g}(k)=M_{g} \psi\left(k+\pi_{g}\right), \quad \bar{q}^{g}(k)=\bar{\psi}\left(k+\pi_{g}\right) M_{g}^{\dagger}
$$

Momentum Space Naive Fermions (cont'd)

Using,

$$
M_{g} \gamma_{\mu} M_{g}^{\dagger} \sin \left(\left[k+\pi_{g}\right]_{\mu} a\right)=\gamma_{\mu} \sin \left(k_{\mu} a\right),
$$

the action \mathcal{S}_{0} becomes

$$
\mathcal{S}_{0}=\sum_{g} \int_{k, D_{\emptyset}} \bar{q}^{g}(k)\left[\sum_{\mu} i \gamma_{\mu} \frac{1}{a} \sin \left(k_{\mu} a\right)+m\right] q^{g}(k) .
$$

Heavy-Light Bilinears

Since there are 16 light tastes and one heavy flavor one has the possibility of forming 16 different B mesons labeled by the light taste index g, i.e. B_{g}. The obvious choice for an interpolating heavy-light operator has the general form

$$
\mathcal{W}_{B_{g}}(x)=\bar{\Psi}_{H}(x) \gamma_{5} M_{g} e^{i \pi_{g} \cdot x} \Psi(x)
$$

The $16 B_{g}$ mesons are degenerate and do not mix. No information is lost by working with just one of them, e.g. with $g=\emptyset$.

Momentum Space Heavy-Light Bilinears

$$
\begin{aligned}
& \sum_{\vec{x}} \mathcal{W}_{B}(\vec{x}, t)=\sum_{g_{s} \in G_{s}} \int_{\vec{k}, D_{s, \emptyset}} \int_{-\pi / 2 a}^{\pi / 2 a} \frac{d k_{0}}{2 \pi} e^{i k_{0} t} \\
& \left\{\widetilde { \psi } _ { H } (\vec { k } + \vec { \pi } _ { g _ { s } } , t) \gamma _ { 5 } \left[M_{g_{s}}^{\dagger} q_{s}\left(\vec{k}, k_{0}\right)\right.\right. \\
& \left.\left.\quad+(-1)^{t} M_{g_{t} g_{s}}^{\dagger} q^{g_{t} g_{s}}\left(\vec{k}, k_{0}\right)\right]\right\}
\end{aligned}
$$

Use fact that $\bar{\psi}_{H}\left(\vec{k}+\vec{\pi}_{g_{s}}, t\right)$, for $\vec{\pi}_{g_{s}} \neq \vec{\pi}_{\emptyset}$, represents a highly energetic heavy quark.

$$
\begin{aligned}
& \sum_{\vec{x}} \mathcal{W}_{B}(\vec{x}, t) \rightarrow \int_{\vec{k}, D_{s, 0}} \int_{-\pi / 2 a}^{\pi / 2 a} \frac{d k_{0}}{2 \pi} e^{i k_{0} t} \\
& \left\{\widetilde{\psi}_{H}(\vec{k}, t) \gamma_{5}\left[q\left(\vec{k}, k_{0}\right)+(-1)^{t} M_{g_{t}}^{\dagger} g^{g_{t}}\left(\vec{k}, k_{0}\right)\right]\right\}
\end{aligned}
$$

+ highly energetic state contributions

Momentum Space Heavy-Light Bilinears (cont'd)

One can estimate the splitting between physical and lattice artifact levels.
$\Delta E=E_{\tilde{H}}-E_{H} \approx \sqrt{M_{b}^{2}+\left(\frac{\pi}{a}\right)^{2}}-M_{b}$
For the coarse MILC lattices, $a^{-1} \approx 1.6 \mathrm{GeV}$ and $\Delta E \sim 2.1 \mathrm{GeV}$.

Note: Wilson type fermions have heavy doublers with $\Delta E \sim a^{-1}$.
Note: one cannot go to $M_{H} \rightarrow \infty$

So,

- Effect of multiple light tastes simpler when studying heavylight systems.
- The undoubled heavy quark picks out a unique light taste. It is sufficient to work with one of the B_{g} 's.
- This is true in heavy-light meson decay constant (2-point), semi-leptonic form factor (3-point), and in B_{B} (four-fermion operator) calculations.
- Expressions for heavy-light currents and four-fermion operators are the same as in the continuum theory (no hypercubic constructions or point-splittings necessary).

Relation between Naive and Staggered Propagators

Simple but very useful relation between staggered and naive light propagators.

$$
\Psi(x)=\Omega(x) \Phi(x), \quad \bar{\Psi}(x)=\bar{\Phi}(x) \Omega(x)^{\dagger}
$$

with

$$
\begin{gathered}
\Omega(x)=\prod_{\mu=0}^{3}\left(\gamma_{\mu}\right)^{x_{\mu}} \\
\mathcal{S}_{0} \rightarrow \mathcal{S}_{\Phi}=a^{4} \sum_{x}\left\{\Phi(x)\left[\sum_{\mu} \eta_{\mu}(x) \frac{1}{a} \nabla_{\mu}+m\right] \Phi(x)\right\} \\
\eta_{\mu}(x)=(-1)^{x_{0}+\ldots x_{(\mu-1)}}
\end{gathered}
$$

So,

$$
\begin{gathered}
G_{\Psi}(x, y)=\Omega(x) G_{\Phi}(x, y) \Omega^{\dagger}(y) \\
G_{\Phi}(x, y)=\widehat{I}_{D} G_{\chi}(x, y) \\
G_{\Psi}(x, y)=\Omega(x) \Omega^{\dagger}(y) G_{\chi}(x, y)
\end{gathered}
$$

Perturbative Matching

(Emel Gulez, Matt Wingate, J.S.)

Matching has been carried out for AsqTad light, $\mathcal{O}\left(a^{2}\right)$ and $\mathcal{O}\left(1 / M^{2}\right)$ improved NRQCD heavy, and Symanzik improved glue actions.

One-loop matching of V_{0}, A_{0}, V_{k} and A_{k} through $\mathcal{O}\left(\alpha_{s}\right), \mathcal{O}\left(a \alpha_{s}\right)$, $\mathcal{O}\left(\alpha_{s} /(a M)\right)$, and $\mathcal{O}\left(\alpha_{s} \wedge_{Q C D} / M\right)$
i.e. including all dimension 4 current corrections.

As part of the matching we reproduced H.Trottier's Z_{q} for massless AsqTad quarks using a gluon mass IR regulator and calculated the NRQCD heavy quark self energy (E_{0}, Z_{m} and Z_{Q}) at one-loop order (generalizing previous calculation by C.Morningstar to improved glue).

$$
\begin{gathered}
M_{p e r t}=Z_{m} M_{0}-E_{0}+E_{\text {sim }}(0) \\
M_{k i n}=\frac{p^{2}-\Delta E^{2}}{2 \Delta E}, \quad \Delta E \equiv E_{\operatorname{sim}}(p)-E_{\operatorname{sim}}(0)
\end{gathered}
$$

1/M Current Corrections

For V_{0}, A_{0} :

$$
\begin{aligned}
J_{0}^{(0)}(x) & =\bar{q}(x) \Gamma_{0} Q(x), \\
J_{0}^{(1)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \Gamma_{0} \gamma \cdot \nabla Q(x), \\
J_{0}^{(2)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \gamma \cdot \overleftarrow{\nabla} \gamma_{0} \Gamma_{0} Q(x) .
\end{aligned}
$$

and for V_{k}, A_{k} :

$$
\begin{aligned}
J_{k}^{(0)}(x) & =\bar{q}(x) \Gamma_{k} Q(x), \\
J_{k}^{(1)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \Gamma_{k} \gamma \cdot \nabla Q(x), \\
J_{k}^{(2)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \gamma \cdot \overleftarrow{\nabla} \gamma_{0} \Gamma_{k} Q(x), \\
J_{k}^{(3)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \nabla_{k} Q(x) \\
J_{k}^{(4)}(x) & =\frac{1}{2 M_{0}} \bar{q}(x) \overleftarrow{\nabla}_{k} Q(x),
\end{aligned}
$$

Matching of A_{0}

We use :

$$
\begin{aligned}
\left\langle A_{0}\right\rangle_{Q C D}= & \left(1+\alpha_{s} \tilde{\rho}_{0}\right)\left\langle J_{0}^{(0)}\right\rangle+ \\
& \left(1+\alpha_{s} \rho_{1}\right)\left\langle J_{0}^{(1), s u b}\right\rangle+\alpha_{s} \rho_{2}\left\langle J_{0}^{(2), s u b}\right\rangle \\
J^{(i), s u b}= & J^{(i)}-\alpha_{s} \zeta_{10} J^{(0)}
\end{aligned}
$$

The second term subtracts power law contributions through $\mathcal{O}(\alpha /(a M))$.

Similar expressions for V_{k} involving, however, 5 currents.

Note :

$$
Z\left(V_{\mu}\right) \equiv Z\left(A_{\mu}\right)
$$

$$
J^{(1)} \text { versus } J^{(1), \text { sub }}
$$

$a M_{0}$	$\left\|J^{(1)}\right\| / J^{(0)}[\%]$	$\left\|J^{(1), s u b}\right\| / J^{(0)}[\%]$
$2.8\left(B_{s}\right)$	$9.0(4)$	$3.7(4)$
2.1	$11.7(4)$	$5.0(4)$
1.6	$14.7(4)$	$6.4(4)$
1.2	$18.3(4)$	$7.8(4)$
1.0	$20.7(4)$	$8.6(4)$

Quenched NRQCD/Clover results at the physical B_{s}

β	$\left\|J^{(1)}\right\| / J^{(0)}$ [\%]	$\mid J^{(1), \text { sub } \mid / J^{(0)}[\%]}$
5.7	~ 8	~ 4
6.0	~ 10	~ 4
6.2	~ 13.5	~ 5

Much better scaling for $J^{(1), s u b}$.

Matching Coefficients ρ_{i}

$$
\mathcal{O}(\alpha) \text { and } \mathcal{O}(\alpha / M) \text { Corrections to } \Phi=f_{H_{s}} \sqrt{M_{H_{s}}}
$$

$1 / M$ current corrections to semi-leptonic form factors will be discussed later.

Heavy-Light Meson Decay Constants

(Alan Gray, Matt Wingate, et al.)

To date, all our results are from the coarser MILC configurations with $a^{-1} \sim 1.6 \mathrm{GeV}$.

$a M_{0}$	$u_{0} a m_{q}($ sea $)$	$u_{0} a m_{q}$ (valence)
2.8	0.01	$0.05,0.04,0.02,0.01$
2.1	0.01	0.005
1.9	0.01	0.04
1.6	0.01	0.04
1.2	0.01	0.04
1.0	0.01	0.04
2.8	0.02	$0.04,0.02$
2.1	0.02	0.04
1.9	0.02	0.04
1.6	0.02	0.04
1.2	0.02	0.04
1.0	0.02	0.04

> Results for $f_{B_{s}}$ and $f_{D_{s}}$
> (Matt Wingate, et al.; PRL 92, 2004)

We find,

$$
\begin{gathered}
f_{B_{s}}=260 \pm 7 \pm 26 \pm 8 \pm 5 \mathrm{MeV} \\
f_{D_{s}}=290 \pm 20 \pm 29 \pm 29 \pm 6 \mathrm{MeV}
\end{gathered}
$$

The dominant systematic error for $f_{B_{s}}$ comes from uncertainties in higher order perturbative matching.

$$
f_{H_{s}} \sqrt{M_{H_{s}}} \text { versus } 1 / M_{H_{s}}
$$

f_{B} and Chiral Extrapolation to Physical B

During the past year we have worked hard on reducing statistical errors in decay constant calculations, especially at lighter light quark masses.

We find that smearing the heavy quarks and employing a matrix of smeared correlators significantly reduces errors.

We have also started to implement the Staggered Chiral PT formulas of Aubin \& Bernard for heavy-light physics.

Work is still underway to accumulate more fully unquenched data on the coarser and finer MILC lattices.

Effect of Smearing on $\Phi_{B}=f_{B} \sqrt{M_{B}}$

$$
\xi=\Phi_{B_{s}} / \Phi_{B} \text { versus } m_{q}
$$

Uses $S \chi P T$ of Aubin \& Bernard

Uses $S \chi P T$ of Aubin \& Bernard

B Semileptonic Decay Form Factors

(Emel Gulez, J.S. et al.)

$a M_{0}$	$u_{0} a m_{q}($ sea $)$	$u_{0} a m_{q}($ valence $)$
2.8	0.01	$0.04,0.02,0.01,0.005$
2.8	0.02	0.02

Simulations at other dynamical quark masses and on finer lattices are underway.

Since LAT'04 we are,

- accummulating more fully unquenched data
- analysing dimension four ($1 / M, \alpha / M$ and $a \alpha$) current corrections to the form factors.
- starting to think about $S \chi P T$ chiral extrapolations

3-pnt Correlators

$$
\begin{aligned}
& C^{(3)}\left(\vec{p}_{\pi}, \vec{p}_{B}, t, T_{B}\right)= \\
& \sum_{\vec{z}} \sum_{\vec{y}}\left\langle\Phi_{\pi}(0) J^{\mu}(\vec{z}, t) \Phi_{B}^{\dagger}\left(\vec{y}, T_{B}\right)\right\rangle e^{i \vec{p}_{B} \cdot \vec{y}^{i\left(\vec{p}_{\pi}-\vec{p}_{B}\right) \cdot \vec{z}}}
\end{aligned}
$$

$\vec{p}_{B}=0$ throughout and $T_{B}=16$ (also 20)

Fits :

$$
\begin{aligned}
& C^{(3)}\left(\vec{p}_{\pi}, \vec{p}_{B}, t, T_{B}\right) \rightarrow \\
& \sum_{k=0}^{N_{\pi}-1} \sum_{j=0}^{N_{B}-1}(-1)^{k * t}(-1)^{j *\left(T_{B}-t\right)} \\
& \quad \times A_{j k} e^{-E_{\pi}^{(k)} t} e^{-E_{B}^{(j)}\left(T_{B}-t\right)}
\end{aligned}
$$

Most fits used $N_{\pi}=1$ and $N_{B}=3-8$ (Bayesian fits)
Goal is to extract $\Longrightarrow \quad A_{00}$

Fit to B-correlator

Fit to $\langle\pi| V_{0}|B\rangle$

Fit to $\langle\pi| V_{k}|B\rangle$

Form Factors

$$
\begin{aligned}
&\left\langle\pi\left(p_{\pi}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[p_{B}^{\mu}+p_{\pi}^{\mu}-\frac{M_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right] \\
&+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu} \\
&=\sqrt{2 M_{B}}\left[v^{\mu} f_{\|}+p_{\perp}^{\mu} f_{\perp}\right] \\
& v^{\mu}=\frac{p_{B}^{\mu}}{M_{B}}, p_{\perp}^{\mu}=p_{\pi}^{\mu}-\left(p_{\pi} \cdot v\right) v^{\mu}, q^{\mu}=p_{B}^{\mu}-p_{\pi}^{\mu}
\end{aligned} f_{\|}=\frac{A_{00}\left(V^{0}\right)}{\sqrt{\varsigma_{\pi}^{(0)} \zeta_{B}^{(0)}} \sqrt{2 E_{\pi}} Z_{V_{0}}} \begin{aligned}
f_{\perp} & =\frac{A_{00}\left(V^{k}\right)}{\sqrt{\varsigma_{\pi}^{(0)} \zeta_{B}^{(0)}} p_{\pi}^{k}} \sqrt{2 E_{\pi}} Z_{V_{k}}
\end{aligned}
$$

$Z_{V_{0}}, Z_{V_{k}}$ estimated via 1-Ioop pert. th.

Results for $f_{\|}$

Results for f_{\perp}

Chiral Extrapolations for $f_{\|}$

Chiral Extrapolations for f_{\perp}

Becirevic-Kaidalov (BK) Parametrization

This ansatz satisfies :
$-f_{+}(0)=f_{0}(0)$

- HQET scaling laws
- position of pole at $q^{2}=M_{B^{*}}^{2}$

$$
f_{+}\left(q^{2}\right)=\frac{C_{B}\left(1-\alpha_{B}\right)}{\left(1-\tilde{q}^{2}\right)\left(1-\alpha_{B} \tilde{q}^{2}\right)} \quad f_{0}\left(q^{2}\right)=\frac{C_{B}\left(1-\alpha_{B}\right)}{\left(1-\tilde{q}^{2} / \beta_{B}\right)}
$$

$\left(\tilde{q}^{2} \equiv q^{2} / M_{B^{*}}^{2}\right)$

The chirally extrapolated $f_{0} \& f_{+}$are fit very well by a BK ansatz using the physical $M_{B^{*}}$ mass and
$C_{B}=0.42(3) \quad \alpha_{B}=0.41(7) \quad \beta_{B}=1.18(5)$
which leads to $f_{0}(0)=f_{+}(0)=0.25(2)$.

BK parametrization fit to f_{0} and f_{+} (at the physical pion)

Extracting $\left|V_{u b}\right|$, Lattice + CLEO

Several experimental groups are studying the process $B \longrightarrow \pi^{+}, e^{-} \bar{\nu}$
CLEO, BaBar, Belle

Using lattice determination of $f_{+}\left(q^{2}\right)$ one can integrate

$$
\frac{1}{\left|V_{u b}\right|^{2}} \frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}}{24 \pi^{3}} p_{\pi}^{3}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

to get $\frac{\Gamma}{\left|V_{u b}\right|^{2}} \Longrightarrow\left|V_{u b}\right|$
Using branching fractions $\Gamma / \Gamma_{\text {full }}$ from CLEO [S.B.Athar et al.,PRD 68,072003 (2003)] we find,
(Preliminary)

$$
\left|V_{u b}\right|= \begin{cases}3.86(32)(58) \times 10^{-3} & 0 \leq q^{2} \leq q_{\max }^{2} \\ 3.52(73)(44) \times 10^{-3} & 16 G e V^{2} \leq q^{2}\end{cases}
$$

Extracting $\left|V_{u b}\right|$, Lattice + Belle

[Belle collaboration contribution to ICHEP'04] (K.Abe et al.,hep-ex/0408145)

Improvements

- other dynamical quark masses (more fully unquenched results)
- $1 / M$ current corrections
- better chiral extrapolations based on $S \chi P T$ (Aubin \& Bernard).
- use Moving NRQCD to get to lower q^{2} (K.Foley, LAT'04)
- work with finer MILC configurations

Systematic Errors

	order	error	how to improve	status
matching	α_{s}^{2}	9\%	do 2-Ioop matching	about to embark
relativistic + finite a corrections	$\begin{aligned} & \frac{\Lambda}{M}, \frac{\alpha_{s}}{(a M)} \\ & \frac{\alpha_{s} \Lambda}{M}, a \alpha_{s} \end{aligned}$	5\%	include mixing with Dim. 4 currents	done
chiral extrapolations		5\%	$\begin{gathered} \text { use } S \chi P T \\ \text { check } m_{l}^{\text {sea }} \text { dep. } \end{gathered}$	in progress
finite a error in action	$a^{2} \alpha_{s}$	2\%	improve action finer lattices	in progress
Total		11\%		

f_{\perp} at Two Sea Quark Masses

$u_{0} a m_{q}$ (valence) fixed at 0.02

1/M Current Corrections (revisited)

For V_{0}, A_{0} :

$$
\begin{aligned}
J_{0}^{(0)}(x) & =\bar{q}(x) \Gamma_{0} Q(x), \\
J_{0}^{(1)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \Gamma_{0} \gamma \cdot \nabla Q(x), \\
J_{0}^{(2)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \gamma \cdot \overleftarrow{\nabla} \gamma_{0} \Gamma_{0} Q(x) .
\end{aligned}
$$

and for V_{k}, A_{k} :

$$
\begin{aligned}
J_{k}^{(0)}(x) & =\bar{q}(x) \Gamma_{k} Q(x), \\
J_{k}^{(1)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \Gamma_{k} \gamma \cdot \nabla Q(x), \\
J_{k}^{(2)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \gamma \cdot \overleftarrow{\nabla} \gamma_{0} \Gamma_{k} Q(x), \\
J_{k}^{(3)}(x) & =\frac{-1}{2 M_{0}} \bar{q}(x) \nabla_{k} Q(x) \\
J_{k}^{(4)}(x) & =\frac{1}{2 M_{0}} \bar{q}(x) \overleftarrow{\nabla}_{k} Q(x),
\end{aligned}
$$

$V_{0}^{(1)} / V_{0}^{(0)}$ versus Pion Energy

$V_{k}^{(4)} / V_{k}^{(0)}$ versus Pion Energy

multiplied by $\rho_{4} \alpha_{s}=-0.029 \alpha_{s}$

multiplied by $\rho_{3} \alpha_{s}=0.218 \alpha_{s}$
$V_{k}^{(2)} / V_{k}^{(0)}$ versus Pion Energy

multiplied by $\rho_{2} \alpha_{s}=0.169 \alpha_{s}$

$V_{k}^{(1)} / V_{k}^{(0)}$ versus Pion Energy

subtract $\zeta_{10} \alpha_{s}=0.055 \alpha_{s}$
multiply by $\left[1+\rho_{1} \alpha_{s}\right]=\left[1+0.349 \alpha_{s}\right]$

Effect of $1 / M$ Current Corrections on $f_{\|}$

Effect of $1 / M$ Current Corrections on f_{\perp}

Summary and Future Plans

The general availability of the MILC dynamical configurations and the use of improved staggered valence quarks in heavy-light simulations, have led to significant progress in heavy meson decay constant and semi-leptonic form factor determinations.

Much work remains to be done, however.

- more fully unquenched data and simulations on finer lattices
- further development of Moving NRQCD
- determination of B_{B}
- Higher order matching of lattice operators

Work on all these fronts is underway.

