Taylor expansions of hadron screening masses in chemical potential

Irina Pushkina School of Biosphere Science, Hiroshima University Web-site: <u>http://home.hiroshima-u.ac.jp/~irisha/</u>

for QCD-TARO Collaboration

(Ph. de Forcrand, M. Garcia Perez, S. Kim, H. Matsufuru, A. Nakamura, I.-O. Stamatescu, T. Takaishi, T. Umeda)

Current results: heplat/0410017 Introduction

- Properties of hadrons at finite T and μ

Definitions

- Introduction of chemical potential into a theory
- Formulation on the lattice

The prospects of the developed framework

- What can we do?

- Two scenarios: finite T and $\mu=0$, finite T and μ Numerical simulations

- Results and discussions

- Change of hadron properties in the planes

 $(T, \mu_{l}), (T, \mu_{B}) \text{ and } (T, \mu_{l}, \mu_{B})$ Conclusion Properties of hadrons at finite T

- Phenomenological models
 (the vector dominance model, QCD sum rules etc.)
- Lattice QCD simulations
 (QCD Plasma, hadron correlators, charmonium etc.)

Properties of hadrons at finite density

✓ Calculations in SU(2)

 There is no lattice QCD study of hadron pole mass

> Our study: the screening masses of various hadrons in the vicinity of zero chemical potential in SU(3)

Application of a Taylor series expansion method

✓ The singlet and non-singlet quark number susceptibilities

- S.Gottlieb et al., Phys.Rev.D55 (1997) 6852)

✓ The susceptibilities for quenched and 2 flavors QCD (*Phys.Rev.D65 (2002) 054506*). The susceptibilities for 3 flavors with improved staggered fermions (*MILC, hep-lat/0209079*).

 \checkmark The responses of the chiral condensate with respect to the chemical potential at m=0

- QCD-TARO Collaboration, hep-lat/0110223

A thermodynamical system is described by the partition function

$$Z = Tre^{-\frac{1}{\kappa T}(H-\mu N)} = \int [DU] [D\overline{\psi}] [D\psi] e^{-\frac{1}{\kappa T}S_G - \overline{\psi}\Delta\psi}$$
$$= \int [DU] e^{-\frac{1}{\kappa T}S_G} \det D(m_u, \mu_u) \det D(m_d, \mu_d) \det D(m_s, \mu_s)$$

For staggered fermions, the fermion matrix

Definitions

$$D(x,y) = am_q \delta_{x,y} + \frac{1}{2} \sum_{i=1}^{3} \eta_i(x) \{ U_i(x) \delta_{x+\hat{i},y} - U_i^+(y) \delta_{x-\hat{i},y} \}$$

+ $\frac{1}{2} \eta_4(x) \{ e^{+a\mu} U_4(x) \delta_{x+\hat{4},y} - e^{-a\mu} U_4^+(y) \delta_{x-\hat{4},y} \}$

The chemical potential is introduced as,

$$U_t(x) \to e^{a\mu}U_t(x)$$
$$U_t^+(x) \to e^{-a\mu}U_t^+(x)$$

Taylor series expansion method

A Taylor series expansion of the screening mass M

$$\frac{M(\mu)}{T} = \frac{M}{T}\Big|_{\mu=0} + \left(\frac{\mu}{T}\right)\frac{\partial M}{\partial \mu}\Big|_{\mu=0} + \frac{1}{2}\left(\frac{\mu}{T}\right)^2 \frac{T}{2}\frac{\partial^2 M}{\partial \mu^2}\Big|_{\mu=0} + O\left[\left(\frac{\mu}{T}\right)^3\right]$$

For the successful analysis we need

- to calculate the derivatives of hadron correlators with respect to chemical potential using the lattice QCD
- ✓ to extract the responses of hadron screening masses using two-exponential fitting

 $M(\mu=0), dM/d\mu(\mu=0), d^2M/d\mu^2(\mu=0)$

✓ to take the chiral limit $(m_q > 0)$ → physical results

We can ...

- ✓ explore a region which currently runs relativistic heavy-ion collision experiments at RHIC
- Enrich our theoretical understanding of QCD at finite isospin and baryonic density
- ✓ Investigate baryon mass at finite baryonic density in SU(3) by lattice QCD

Our targets:

Mesons

- pseudoscalar and vector

Baryons

- neutron (udd), proton (uu) and Δ

Problem: How to get the derivatives of the hadron correlator from

the meson propagator $P\partial T = Tr[P(\hat{\mu}_u)_{n:0}\Gamma P(\hat{\mu}_d)_{0:n}\Gamma^+]$

the quark propagator $P(\hat{\mu}) = D(U; \hat{\mu})^{-1}$

the baryon $\sum_{\vec{x}} \varepsilon^{abc} \mathcal{C}^{orreator}(x,0) P^{bb'}_{\beta\beta'}(x;0) P^{cc'}_{\gamma\gamma'}(x;0)$

2-flavor SU(3) gauge theory

- Lattice size: $12^2 x 24 x 6$ with $N_f=2$ KS fermions
- Quark masses: ma=0.10, 0.05 and 0.025 lattice spacing $a=0.09\sim0.27$ fm, temperature 0.5~1.6T_c
- Setting the scale (Tamhankar, Nucl. Phys. (Proc. Suppl.) 83 (2000) 212)
- "corner" wall source with Coulomb gauge fixing
- Stochastic method with 200 complex vectors (estimation of the traces of various fermionic operators)

Statistics:

- R-algorithm, 1000 confs./10 unit length trajs.
- MD step size, 0.02

Chemical potential for two flavor system:

isoscalar (baryon) $\mu_{S'}$ $\mu_{S}=\mu_{U}=\mu_{d}$ isovector (isospin) $\mu_{V'}$ $\mu_{V}=\mu_{U}=-\mu_{d}$ $M(\mu=0)$ at finite T

$$C_{\pi}(z) = C_{1}\left(e^{-\hat{m}_{1}\hat{z}} + e^{-\hat{m}_{1}(N_{z}-\hat{z})}\right) + C_{2}\left(e^{-\hat{m}_{2}\hat{z}} + e^{-\hat{m}_{2}(N_{z}-\hat{z})}\right)$$
$$C_{\rho}(z) = C_{1}'\left(e^{-\hat{m}_{1}'\hat{z}} + e^{-\hat{m}_{1}'(N_{z}-\hat{z})}\right) + C_{2}'\left((-1)^{\hat{z}}\right)\left(e^{-\hat{m}_{2}'\hat{z}} + e^{-\hat{m}_{2}'(N_{z}-\hat{z})}\right)$$
$$C_{N}(z) = C_{1}''\left(e^{-\hat{m}_{1}'\hat{z}} + (-1)^{\hat{z}}\right)e^{-\hat{m}_{1}''(N_{z}-\hat{z})}\right) + C_{2}''\left(((-1)^{\hat{z}}\right)e^{-\hat{m}_{2}''\hat{z}} + e^{-\hat{m}_{2}''(N_{z}-\hat{z})}\right)$$

 $dM(\mu=0)/d\mu$ at finite T

Pseudoscalar and vector mesons The first order response of mesons to the chemical potential is equal to 0! Baryons $M_{neutron}$ M_{proton} M_{proton} M_{proton}

ma=0.05 - open symbols ma=0.10 - filled symbols

the confined mesons feel baryon density effect

little the mesons become heavier

with T response to μ_V is negative and becomes smaller at large T

 \Rightarrow the mass becomes zero around $\mu_{V} \sim M$

The second order term is of the same order as $dM/d\mu$

 \Rightarrow nucleon mass has less chemical potential effect The difference between two quark mass cases is very small till $1.1T_c$

Hadrons in the plane (T,

Motivation

Nature provides us with isospin-asymmetric matter

 μ_{B})

 $\mu_I << \mu_B$

A prime goal of heavy ion collision experiments at SPS, LHC (CERN) and RHIC (Brookhaven) is to probe the transition from hadronic matter to a quark gluon plasma at high *T* and small baryon density

Hadrons in the plane (T, \mu_s)

Hadrons in the plane (T, μ_I)

Main features

- \checkmark The theory has no fermion sign problem
- ✓ Low μ_I , chiral perturbation theory is applicable
- ✓ Assimptotically high μ_I , perturbative QCD is at work

Drawbacks

✓ A system is unstable with respect to weak decays (no thermodynamic $\lim_{\tau \to 0}^{+\infty}$

Hadrons in the plane (T, μ_V *)*

Chiral perturbation theory $\mu_I \ll m_{\rho}$ *T*=0

The low-energy dynamics is governed by the chiral Lagrangian, with the matrix pion field Σ

$$L_{eff} = \frac{f_{\pi}^2}{4} Tr \nabla_v \Sigma \nabla_v \Sigma^+ - \frac{m_{\pi}^2 f_{\pi}^2}{2} \operatorname{Re} Tr \Sigma$$

The chemical potential is included in the dervative

$$\nabla_0 \Sigma = \partial_0 \Sigma - \frac{\mu_I}{2} (\tau_3 \Sigma - \Sigma \tau_3), \quad \nabla_i \Sigma = \partial_i \Sigma$$

Effects of μ_I on the baryon masses

the π^{-1} 's in the condensate tend to repel the baryons, lifting up their masses

the nucleon mass eigenstate becomes a superposition of vacuum n and p states

the bary on mass 0 ever drops to zero!

Son & Stephanov

Conclusion

We have analyzed the behavior of the 1st and 2nd order derivatives of the meson and baryon screening masses with respect to the chemical potential

(the hadron screening mass shows different behaivour as a function of both *T* and chemical potential in the vicinity of $\mu=0$)

Results are very encouraging

The calculations for Δ baryon are in progress

Next steps:

- \Rightarrow extrapolation to the chiral limit *ma*->0
- \Rightarrow comparison with experimental data
- \Rightarrow investigation of other hadrons

