Heavy Quark Physics in 2+I-Flavor Lattice QCD

Andreas Kronfeld
Fermilab
ILFTNetwork Tsukuba Workshop
"Lattice QCD and Particle Phenomenology"
December 14, 2004

Outline

- Semileptonic D decays
- Chiral extrapolation with and without BK
- Estimation of discretization effects
- D Meson Decay Constant
- Chiral extrapolation with stagPQ
- Mass of the B_{c} Meson
- Estimation of discretization effects

Preliminaries

- 2+I flavor calculations with improved staggered quarks have reproduced PDG values of a wide variety of masses, mass splittings, and decay constants.
- Results assume (and suggest!?)
- $\left[\operatorname{det}_{4} M\right]^{1 / 4} \doteq \operatorname{det}_{1}(D D+m)$
- effective field theories for heavy quarks
- Thus encouraged, HPQCD, MILC, and Fermilab Lattice Collaborations are using these methods to calculate matrix elements relevant to flavor physics.
- The stakes are high: "Are non-Standard phenomena visible in B decays?"

Proofs

- We need physicists' proofs that the methods are sound.
- For heavy quarks, using HQET/NRQCD as a theory of cutoff effects suffices.
- For staggered quarks, the fourth-root trick could benefit from a better foundation, but (I think) most of the simple arguments against it are lame.

Tests

- As a complement to (quasi)-mathematical proofs, other tests are desirable.
- Experimenters suggest making predictions.
- D meson decay properties and B_{c} mass are being improved by ongoing experiments.

$$
f_{+}^{D \rightarrow \pi}\left(q^{2}\right) \& f_{+}^{D \rightarrow K}\left(q^{2}\right)
$$

Semileptonic Decay

$$
\begin{aligned}
\left\langle\pi\left(p_{\pi}\right)\right| \mathcal{V}^{\mu}\left|B\left(p_{B}\right)\right\rangle= & f_{+}(E)\left[p_{B}+p_{\pi}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q\right]^{\mu}+ \\
& f_{0}(E) \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}
\end{aligned}
$$

Polology

- For $E<0$, there are poles and cuts, and so on, from real states in $l v$ scattering.
- vector mesons for f_{+}
- scalar mesons for f_{0}
- Their effects spill into physical region $E>0$.
- For D and B mesons, the vector is nearby.

BK Ansatz

- With this in mind Becirevic and Kaidalov proposed the parametrization

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=\frac{f(0)}{\left(1-q^{2} / m_{D^{*}}^{2}\right)\left(1-\alpha q^{2} / m_{D^{*}}^{2}\right)} \\
& f_{0}\left(q^{2}\right)=\frac{f(0)}{\left(1-q^{2} / m_{D^{*}}^{2} / \beta\right)}
\end{aligned}
$$

- Builds in the closest pole, and has parameters for the slop.
- Advantages
- builds in pole, \& also heavy-quark scaling laws
- fit to BK is most sensitive to low energy, yet f_{0} influences f_{+}through $f(0)$.
- Disadvantages
- parametrization deteriorates with E
- fit to BK is sensitive mostly to low energy, and f_{0} determines $f(0)$.
- Analysis method
- calculate matrix elements for various (m_{q}, \mathbf{p}).
- use $B K$ to interpolate to fiducial values of E, same for each ensemble.
- use staggered χ PT for chiral extrapolation
- use BK to extrapolate to full kinematic range

- An alternative is to avoid BK altogether, and use χ PT to extrapolate jointly in $\left(m_{q}, E\right)$:

- Consistent, but no-BK has larger error in low q^{2} (high E) region.

hep-ph/0408306

dominant error:

- $D \rightarrow K l v \quad$ heavy quark $f_{+}^{D \rightarrow K}(0)=0.73(3)(7)$
$f_{+}^{D \rightarrow K}(0)=0.78(5)$ [BES, hep-ex/0406028]
- $D \rightarrow \pi / v:$

$$
\begin{aligned}
& f_{+}^{D \rightarrow \pi}(0)=0.64(3)(6) \\
& f_{+}^{D \rightarrow \pi}(0)=0.87(3)(9) f_{+}^{D \rightarrow K}
\end{aligned}
$$

$$
f_{+}^{D \rightarrow \pi}(0)=0.86(9) f_{+}^{D \rightarrow K} \text { [CLEO, hep-ex/0407035] }
$$

$D \rightarrow K l v$ vs. q^{2}

Discretization Effects

- Dominant error, but only one sentence!
- Both QCD and LGT can be described by

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QCD}} \doteq \mathcal{L}_{\mathrm{HQET}}=\sum_{i} \mathcal{C}_{i}^{\text {cont }}\left(m_{Q}\right) \mathcal{O}_{i} \\
& \mathcal{L}_{\mathrm{LGT}} \doteq \mathcal{L}_{\mathrm{HQET}\left(m_{0} a\right)}=\sum_{i} \mathcal{C}_{i}^{\text {lat }}\left(m_{Q}, m_{0} a\right) \mathcal{O}_{i}
\end{aligned}
$$

- Discretization error is in mismatch of coefficients.
- In general,

$$
\operatorname{error}_{i}=\left|\left[\mathcal{C}_{i}^{\text {lat }}\left(m_{Q}, m_{0} a\right)-\mathcal{C}_{i}^{\text {cont }}\left(m_{Q}\right)\right] \mathcal{O}_{i}\right|
$$

- ForWilson(-like) quarks write

$$
\mathcal{C}_{i}^{\text {lat }}\left(m_{Q}, m_{0} a\right)-\mathcal{C}_{i}^{\text {cont }}\left(m_{Q}\right)=a^{\operatorname{dim} \mathcal{O}_{i}-4} f_{i}\left(m_{0} a\right)
$$

- For heavy-light use HQET to order and estimate

$$
\text { error }_{i}=f_{i}\left(m_{0} a\right)\left(a \Lambda_{\mathrm{QCD}}\right)^{\operatorname{dim} \mathcal{O}_{i}-4}
$$

- What would you use for Λ_{QCD} ?
- Based on estimates of the Λ that appears in the heavy-quark expansion, from lattice, sum rules, and experiment, the sensible range is
- $\Lambda_{\mathrm{QCD}}=500-700 \mathrm{MeV}$

Pending studies on finer lattices, we quoted sum in quadrature of both currents, at $\Lambda_{\mathrm{QCD}}=700 \mathrm{MeV}$

$$
f_{D_{s}} \& f_{D}
$$

$f_{D_{s}} \& f_{D}$

- D meson decay constants either
- determine $\left|V_{c s}\right|$ and $\left|V_{c d}\right|$
- check QCD (with $\left|V_{c s}\right|$ and $\left|V_{c d}\right|$ from CKM unitarity).
- CLEO-c is measuring them.
- A test of light quarks and (staggered) PQxPT.

Staggered PQxPT

- In the case of decay constants, chiral logs are important.
- In staggered PQ PT , Aubin \& Bernard find

$$
m_{u u}^{2} \ln m_{q q}^{2} \rightarrow\left\{\begin{array}{l}
m_{u u}^{2} \ln m_{\text {average }}^{2} \\
m_{u u}^{2} \ln m_{\text {taste singlet }}^{2}
\end{array}\right.
$$

so singularity of $\mathrm{PQ} \chi \mathrm{PT}$ softened.

Chiral Extrapolation f_{D}

- Extrapolate in sea m_{u} and valence m_{q} to get down to real m_{p}.
- Single fit to all data constrains χ PT better.
- Staggered PQ P PT treats all a in same fit.

Chiral Extrapolation $f_{\text {Ds }}$

- Interpolate in valence m_{q} to get down to real m_{s}.
- Extrapolate in sea m_{u} to get down to real $m_{\text {. }}$.

Preliminary Results

- J. Simone et al., hep-lat/04I0030 (Lattice '04)

$$
\begin{gathered}
\frac{f_{D_{s}} \sqrt{m_{D_{s}}}}{f_{D} \sqrt{m_{D}}}=1.20 \pm 0.06 \pm 0.06 \\
f_{D_{s}}=263_{-9}^{+5} \pm 24 \mathrm{MeV} \\
f_{D}=225_{-13}^{+11} \pm 21 \mathrm{MeV} \\
f_{D}=202 \pm 41 \pm 17 \mathrm{MeV} \\
\text { CLEO-c, hep-ex/0411050 }
\end{gathered}
$$

discretization uncertainty as in form factors.

Soft pion theorem

$$
f_{D}^{D-\pi}\left(q_{\text {max }}^{2}\right)=\frac{f_{D}}{f_{\pi}}
$$

Outlook

- We will combine form factors and decay constants to obtain combinations that can be compared directly to experiment, with no CKM input:

$$
\begin{aligned}
& \frac{1}{\Gamma_{D \rightarrow l \nu}} \frac{d \Gamma_{D \rightarrow \pi l \nu}}{d q^{2}} \propto\left|\frac{f_{+}^{D \rightarrow \pi}\left(q^{2}\right)}{f_{D}}\right|^{2} \\
& \frac{1}{\Gamma_{D_{s} \rightarrow l \nu}} \frac{d \Gamma_{D \rightarrow K l \nu}}{d q^{2}} \propto\left|\frac{f_{+}^{D \rightarrow K}\left(q^{2}\right)}{f_{D_{s}}}\right|^{2}
\end{aligned}
$$

B_{c}

B_{c}

- Meson composed of a beautiful anti-quark and a charmed quark.
- Unusual beast
- contrast with $B_{s} \& D_{s}, \psi \& Y: v_{c}=0.7$.
- no annihilation to gluons

훈 Fermilab Today

DØ

Fermilab Result of the Week

CDF

4:00 p.m. One West

Joint Experimental Theoretical Physics Seminar Saverio D'Auria, University of Glasgow
B_{c} : Fully Reconstructed Decays and
Mass Measurement at CDF

QCD Theory \& B_{c}

- Three main tools
- potential models
- potential NRQCD
- lattice QCD
- All treat both quarks as non-relativistic
- charmed quark is pushing it, $v_{c}^{2}=0.5$.

Energy Scales

- Several energy scales in (this) quarkonium
- $2 m_{b}, 2 m_{c}>2 \mathrm{GeV}$
- $m_{b} v_{b}=m_{c} v_{c} \approx 1000 \mathrm{MeV}$
- $1 / 2 m_{c} v_{c}^{2} \approx 350 \mathrm{MeV}, \quad 1 / 2 m_{b} v_{b}^{2} \approx 50 \mathrm{MeV}$
- $\Lambda_{\mathrm{QCD}} \sim 500 \mathrm{MeV}$

NRQCD

$\mathcal{L}_{\mathrm{QCD}} \doteq \mathcal{L}_{\mathrm{HQ}}$
integrate out scale m_{Q}

$$
\left.\mathcal{L}_{\mathrm{HQ}}=\mathcal{L}_{\text {light }}-\bar{h}_{v}\left(m_{1}\right)+i v \cdot D\right) h_{v}+\frac{\bar{h}_{v} D_{\perp}^{2} h_{v}}{2 m_{2}}
$$

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{HQ}}=\mathcal{L}_{\text {light }}-\bar{h}_{v}\left(m_{1}+i v \cdot D\right) h_{v}+\frac{h_{v} D_{\perp}^{2} h_{v}}{2 m_{2}} \\
& \begin{aligned}
& \text { Lattice } \\
& \text { errors }+z_{B}(\mu) \\
& h_{v} s_{\mu \nu} B^{\mu \nu} h_{v} \\
& 2 m_{2} \\
& z_{2} \bar{z}_{R}(\mu) \frac{\bar{h}_{v}\left(D_{\perp}^{2}\right)^{2} h_{v}}{8 m_{2}^{3}} \\
&+z_{\mathrm{D}}(\mu) \\
& \frac{\bar{h}_{v} D_{\perp} \cdot E h_{v}}{4 m_{2}^{2}}+z_{\text {s.o. }}(\mu) \frac{\bar{h}_{v} s_{\mu \nu} D_{\perp}^{\mu} E^{\nu} h_{v}}{4 m_{2}^{2}}
\end{aligned}
\end{aligned}
$$

$$
+\cdots
$$

$$
\doteq \sum_{i} \quad \mathcal{C}_{i}\left(m_{Q}, m_{Q} / \mu\right) \quad \mathcal{O}_{i}\left(\mu / m_{Q} v^{n}\right)
$$

short distances: $\left(m_{Q}\right)^{-1}, a$: long distances: $\left(m_{Q} V^{n^{n}}\right)^{-1}, L$: lumped into coefficients described by operators
(Same Lagrangian as HQET, but different power counting.)

Potential NRQCD

- Integrate out scale $m^{Q^{v} Q}$
- Hamiltonian contains kinetic terms, potentials, and their radiative corrections
- radiative corrections from $m_{Q^{\vee}} Q^{\text {in }} P Q C D$
- bound-state solved a la positronium: assumes small shifts from scales $\Lambda, m_{c} v_{c}^{2}$

Coulomb gluon

NRQCD operators
$H=\frac{\boldsymbol{p}_{c}^{2}}{2 m_{c}}+\frac{\boldsymbol{p}_{b}^{2}}{2 m_{b}}-\frac{\left(\boldsymbol{p}_{c}^{2}\right)^{2}}{8 m_{c}^{3}}-\frac{\left(\boldsymbol{p}_{b}^{2}\right)^{2}}{8 m_{b}^{3}}+\cdots+V(r)$
$V(r)=-\frac{C_{F} \alpha_{s}}{r}+C_{F} \alpha_{s}\left(1+\alpha_{s}+\cdots\right)\left(\frac{1}{4 m_{c}^{2}}+\frac{1}{4 m_{b}^{2}}\right) 4 \pi \delta(\boldsymbol{r})+\ldots$

Potential Models

- Truncate at leading order (in α_{s}, v^{2}).
- Linear confining potential added by hand.
- Potential model α_{s}, m_{Q} not connected to QCD Lagrangian α_{s}, m_{Q}.
- Provide excellent empirical understanding.

Lattice Calculation

- Ian Allison, Christine Davies, Alan Gray,ASK, Paul Mackenzie, \& James Simone
- conference: hep-lat/0409090
- publication: hep-lat/04II027
- Prediction: α_{s}, m_{b}, m_{c} taken from bottomonium and charmonium
- Use latNRQCD for b and Fermilab for c.

Essentials

- We calculate two mass splittings

$$
\begin{aligned}
\Delta_{\psi \Upsilon} & =m_{B_{c}}-\frac{1}{2}\left(\bar{m}_{\psi}+m_{\Upsilon}\right) \quad \text { quarkonium baseline } \\
\Delta_{D_{s} B_{s}} & =m_{B_{c}}-\left(m_{D_{s}}+m_{B_{s}}\right) \quad \text { heavy-light baseline }
\end{aligned}
$$

- Everything is gold-plated, in the sense that the mesons are all stable, and far from threshold.
- Chiral extrapolations mild.

Isolating Lowest State

Correlator is sum of exponentials, lowest exponent is $m_{B_{c}}$

Error Cancellation

- Correlated statistics
- Unphysical shift in rest mass m
- Contributions from higher-in- v^{2} operators, at least from quarkonium baseline.

Chiral Extrapolation

Lattice Spacing Dependence

at lighter of the two light masses

Error Analysis

- Statistical error is straightforward \& small.
- Uncertainty from a^{-1}, m_{b}, m_{c} easy to propagate: latter two are $\pm 10, \pm 5 \mathrm{MeV}$.
- Main problem is to estimate the discretization effect for the heavy quarks

Discretization Effects

(short distance mismatch) • (matrix element)

- Use calculations of tree-level mismatches
- Wave hands for one-loop mismatches
- Estimate matrix elements in potential models
- Check framework with other calculations

Hyperfine i $\boldsymbol{\Sigma} \cdot \mathbf{B}$

- The mismatch of the hyperfine interaction is

$$
\alpha_{s} a b_{B}\left(m_{0} a\right) \times \bar{h} i \boldsymbol{\Sigma} \cdot \boldsymbol{B} h
$$

in both NRQCD and Fermilab Lagrangians.

- Estimate coefficient by comparing the simulation hyperfine splitting with experiment, where latter is known.
- Propagate to $m_{B_{c}}$ and m_{Υ}.

Darwin $\mathbf{D} \cdot \mathbf{E}$

- The mismatch of the Darwin interaction is

$$
\left\{\alpha_{s}, 1\right\} a^{2} b_{\text {Darwin }}\left(m_{0} a\right) \times \bar{h} \boldsymbol{D} \cdot \boldsymbol{E} h
$$

for NRQCD, Fermilab.

- Latter dominates; use known form of the coefficient and (Richardson) potential model estimate of matrix element.
- Matrix element is small.

Relativistic $\left(\boldsymbol{p}^{2}\right)^{2} \& p_{i}^{4}$

- The mismatch of the Darwin interaction is

$$
\left\{\alpha_{s}, 1\right\} a^{3} b_{4}\left(m_{0} a\right) \times\left\{\bar{h}\left(\boldsymbol{p}^{2}\right)^{2} h, \bar{h} \sum_{i} p_{i}^{4} h\right\}
$$ for NRQCD, Fermilab.

- Latter dominates; use known form of the coefficient and (Richardson) potential model estimate of matrix element.
- Matrix element is not small, but check total estimate with charmonium IP-IS.

TABLE I: Estimated shifts in masses and the splittings $\Delta_{\psi \Upsilon}$ and $\Delta_{D_{s} B_{s}}$. Entries in MeV. Dashes (-) imply the entry is negligible.

operator	$m_{B_{c}}$	$\frac{1}{2} \bar{m}_{\psi}$	$\frac{1}{2} m_{\Upsilon}$	$\Delta_{\psi \Upsilon}$	$\bar{n}_{D_{s}}$	$\bar{m}_{B_{s}}$	$\Delta_{D_{s} B_{s}}$
	$a=\frac{1}{8} \mathrm{fm}$						
$\boldsymbol{\Sigma} \cdot \boldsymbol{B}$	-14	0	+3	-17	0	0	-14
Darwin	-3	-3	∓ 1	± 1	-4	-	+1
$\left(\boldsymbol{D}^{2}\right)^{2}$	$+34$	+10	± 3	+24	-	-	+34
D_{i}^{4}	+16	+5	± 2	+11	-	-	+16
total	+18 +37						
	$a=\frac{1}{11} \mathrm{fm}$						
$\boldsymbol{\Sigma} \cdot \boldsymbol{B}$	-12	0	+3	-15	0	0	-12
Darwin	-2	-2	∓ 1	± 1	-2	-	-
$\left(\boldsymbol{D}^{2}\right)^{2}$	+17	+5	± 3	+12	-	-	$+17$
D_{i}^{4}	+7	+2	± 2	+5	-	-	+7
total				+2			+12

Results

- Splittings:

$$
\begin{aligned}
\Delta_{\psi \Upsilon} & =39.8 \pm 3.8 \pm 11.2_{-0}^{+18} \mathrm{MeV} \\
\Delta_{D_{s} B_{s}} & =-\left[1238 \pm 30 \pm 11_{-37}^{+0}\right] \mathrm{MeV},
\end{aligned}
$$

- Meson mass:

$$
\begin{aligned}
& m_{B_{c}}=6304 \pm 4 \pm 11_{-0}^{+18} \mathrm{MeV} \\
& m_{B_{c}}=6243 \pm 30 \pm 11_{-0}^{+37} \mathrm{MeV}
\end{aligned}
$$

- More checks on quarkonium baseline, so it is our main result.

Compare with Models

Compare with CDF

$m_{B_{c}}=6287 \pm 5 \mathrm{MeV}$
CDF, W\&C seminar, 12/03/04
$m_{B_{c}}=6304 \pm 12_{-0}^{+18} \mathrm{MeV}$
[hep-lat/0411027]

Summary

- Results for leptonic and semi-leptonic D decays and the mass of the meson.
- Estimates of uncertainties.
- Agreement with BES, CLEO, FOCUS, and CDF with similar time-scale and error, including predictions.

```
pre- pref.
```

I. a. Earlier; before; prior to: prehistoric.
b. Preparatory; preliminary: premedical.
c. In advance: prepay.
2. Anterior; in front of: preaxial.
[Middle English, from Old French, from Latin prae-, from prae, before, in front. See per 1 in Indo-European Roots.]

