Heavy Quark Physics in 2+1-Flavor Lattice QCD

Andreas Kronfeld Fermilab ILFTNetwork Tsukuba Workshop "Lattice QCD and Particle Phenomenology" December 14, 2004

Outline

- Semileptonic D decays
 - Chiral extrapolation with and without BK
 - Estimation of discretization effects
- D Meson Decay Constant
 - Chiral extrapolation with stagPQ χ PT
- Mass of the B_c Meson
 - Estimation of discretization effects

Preliminaries

- 2+1 flavor calculations with improved staggered quarks have reproduced PDG values of a wide variety of masses, mass splittings, and decay constants.
- Results assume (and suggest !?)
 - $\left[\det_{\mathbf{4}} M\right]^{1/4} \doteq \det_{\mathbf{1}}(\not\!\!D + m)$
 - effective field theories for heavy quarks

- Thus encouraged, HPQCD, MILC, and Fermilab Lattice Collaborations are using these methods to calculate matrix elements relevant to *flavor physics*.
- The stakes are high: "Are non-Standard phenomena visible in *B* decays?"

Proofs

- We need physicists' proofs that the methods are sound.
 - For heavy quarks, using HQET/NRQCD as a theory of cutoff effects suffices.
 - For staggered quarks, the fourth-root trick could benefit from a better foundation, but (I think) most of the simple arguments against it are lame.

Tests

- As a complement to (quasi)-mathematical proofs, other tests are desirable.
- Experimenters suggest making predictions.
- D meson decay properties and B_c mass are being improved by ongoing experiments.

 $f^{D \rightarrow \pi}(q^2) \& f^{D \rightarrow K}(q^2)$

$$\langle \pi(p_{\pi}) | \mathcal{V}^{\mu} | B(p_{B}) \rangle = f_{+}(E) \left[p_{B} + p_{\pi} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q \right]^{\mu} + f_{0}(E) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$

Polology

- For *E* < 0, there are poles and cuts, and so on, from real states in *Iv* scattering.
 - vector mesons for f_+
 - scalar mesons for f_0
- Their effects spill into physical region E > 0.
- For D and B mesons, the vector is nearby.

BK Ansatz

 With this in mind Becirevic and Kaidalov proposed the parametrization

$$f_{+}(q^{2}) = \frac{f(0)}{(1 - q^{2}/m_{D^{*}}^{2})(1 - \alpha q^{2}/m_{D^{*}}^{2})}$$
$$f_{0}(q^{2}) = \frac{f(0)}{(1 - q^{2}/m_{D^{*}}^{2}/\beta)}$$

 Builds in the closest pole, and has parameters for the slop.

- Advantages
 - builds in pole, & also heavy-quark scaling laws
 - fit to BK is most sensitive to low energy, yet f_0 influences f_+ through f(0).
- Disadvantages
 - parametrization deteriorates with E
 - fit to BK is sensitive mostly to low energy, and f_0 determines f(0).

- Analysis method
 - calculate matrix elements for various (m_a, \mathbf{p}) .
 - use BK to interpolate to fiducial values of *E*, same for each ensemble.
 - use staggered χ PT for chiral extrapolation
 - use BK to extrapolate to full kinematic range

• An alternative is to avoid BK altogether, and use χ PT to extrapolate jointly in (m_q , E):

• Consistent, but no-BK has larger error in low q^2 (high E) region.

hep-ph/0408306

dominant error: heavy quark • $D \rightarrow Kh_{V}$ discretization $f_{+}^{D \to K}(0) = 0.73(3)(7)$ $f_{+}^{D \to K}(0) = 0.78(5)$ [BES/hep-ex/0406028] • $D \rightarrow \pi h v$: $f_{+}^{D \to \pi}(0) = 0.64(3)(6)$ $f_{+}^{D \to \pi}(0) = 0.87(3)(9)f_{+}^{D \to K}$ $f_{+}^{D \to \pi}(0) = 0.86(9) f_{+}^{D \to K}$ [CLEO, hep-ex/0407035]

$D \rightarrow Khv vs. q^2$

hep-ex/0410037 FOCUS pole 1.93 mod alpha=0.28 hep-ph/0408306 Okamoto et al. [Fermilab/MILC] 2.5 $\left[f_+(q^2)/f_+(0)\right]^{D\to K}$ 2 1.5 1 0.5

0

0

0.5 1 1.5 2 $q^2 (\text{GeV}^2)$

Discretization Effects

- Dominant error, but only one sentence!
- Both QCD and LGT can be described by

$$\mathcal{L}_{\text{QCD}} \doteq \mathcal{L}_{\text{HQET}} = \sum_{i} \mathcal{C}_{i}^{\text{cont}}(m_{Q})\mathcal{O}_{i}$$
$$\mathcal{L}_{\text{LGT}} \doteq \mathcal{L}_{\text{HQET}(m_{0}a)} = \sum_{i} \mathcal{C}_{i}^{\text{lat}}(m_{Q}, m_{0}a)\mathcal{O}_{i}$$

Discretization error is in mismatch of coefficients.

$$\operatorname{error}_{i} = \left| \left[\mathcal{C}_{i}^{\operatorname{lat}}(m_{Q}, m_{0}a) - \mathcal{C}_{i}^{\operatorname{cont}}(m_{Q}) \right] \mathcal{O}_{i} \right|$$

• For Wilson(-like) quarks write

$$\mathcal{C}_i^{\text{lat}}(m_Q, m_0 a) - \mathcal{C}_i^{\text{cont}}(m_Q) = a^{\dim \mathcal{O}_i - 4} f_i(m_0 a)$$

For heavy-light use HQET to order and estimate

$$\operatorname{error}_{i} = f_{i}(m_{0}a)(a\Lambda_{\mathrm{QCD}})^{\dim \mathcal{O}_{i}-4}$$

- What would you use for $\Lambda_{\rm QCD}?$
- Based on estimates of the Λ that appears in the heavy-quark expansion, from lattice, sum rules, and experiment, the sensible range is

•
$$\Lambda_{QCD}$$
 = 500–700 MeV

Λ (MeV):	400	500	600	700	800	900	1000
$\operatorname{error}_{B} [O(\alpha_{s}a) \text{ Lagrangian}]$	1.8	2.2	2.6	3.1	3.5	3.9	4.4
$\texttt{error}_3 \left[O(\alpha_s a) \texttt{ current} \right]$	1.1	1.4	1.7	2.0	2.2	2.5	2.8
$\operatorname{error}_{E} [O(a^2) \operatorname{Lagrangian}]$	0.4	0.6	0.9	1.2	1.5	1.9	2.4
$(c_E = 0)$	1.1	1.6	2.4	3.2	4.2	5.3	6.6
$\operatorname{error}_X [O(a^2) \operatorname{current}]$	0.9	1.3	1.9	2.6	3.4	4.3	5.4
$(d_1 \text{ off})$	1.3	2.0	2.8	3.9	5.0	6.4	7.9
$\operatorname{error}_{Y}[O(a^2) \operatorname{current}]$	0.4	0.6	0.8	1.1	1.5	1.8	2.3
temporal total	2.8	3.6	4.7	5.9	7.2	8.7	10.5
spatial total	3.2	4.1	5.3	6.6	7.8	9.4	11.2

Pending studies on finer lattices, we quoted sum in quadrature of both currents, at Λ_{OCD} = 700 MeV

$f_{D_s} \& f_{D}$

 f_D , & f_D

- D meson decay constants either
 - determine $|V_{cs}|$ and $|V_{cd}|$
 - check QCD (with $|V_{cs}|$ and $|V_{cd}|$ from CKM unitarity).
- CLEO-c is measuring them.
- A test of light quarks and (staggered) PQ χ PT.

Staggered PQ₂PT

- In the case of decay constants, chiral logs are important.
- In staggered PQ χ PT, Aubin & Bernard find

$$m_{uu}^2 \ln m_{qq}^2 \rightarrow \begin{cases} m_{uu}^2 \ln m_{\text{average}}^2 \\ m_{uu}^2 \ln m_{\text{taste singlet}}^2 \end{cases}$$

so singularity of PQ χ PT softened.

Chiral Extrapolation f_D

- Extrapolate in sea m_u and valence m_q to get down to real m_l .
- Single fit to all data constrains χPT better.
- Staggered PQχPT treats all *a* in same fit.

0 Ο 0.01 0.02 0.03 0.04 0.05 valence am,

0.00

£73

0

O

MILC coarse sea $am_s = 0.05$ Ð O Ð 0.00 0.01 0.02 0.03 0.04 0.05

valence am,

valence am,

Ð

O

O

Ð

0.04

0.05

Chiral Extrapolation f_{Ds}

valence am,

Preliminary Results

• J. Simone et al., hep-lat/0410030 (Lattice '04)

 $\frac{f_{D_s}\sqrt{m_{D_s}}}{f_D\sqrt{m_D}} = 1.20 \pm 0.06 \pm 0.06 ,$ $f_{D_s} = 263^{+5}_{-9} \pm 24 \quad \text{MeV} ,$ $f_D = 225^{+11}_{-13} \pm 21 \quad \text{MeV} .$

 $f_D = 202 \pm 41 \pm 17 \text{ MeV}$ CLEO-C, hep-ex/0411050

discretization uncertainty as in form factors.

Outlook

 We will combine form factors and decay constants to obtain combinations that can be compared directly to experiment, with no CKM input:

$$\frac{1}{\Gamma_{D\to l\nu}} \frac{d\Gamma_{D\to\pi l\nu}}{dq^2} \propto \left| \frac{f_+^{D\to\pi}(q^2)}{f_D} \right|^2$$
$$\frac{1}{\Gamma_{D_s\to l\nu}} \frac{d\Gamma_{D\to K l\nu}}{dq^2} \propto \left| \frac{f_+^{D\to K}(q^2)}{f_{D_s}} \right|^2$$

B_c

B_c

- Meson composed of a beautiful anti-quark and a charmed quark.
- Unusual beast
 - contrast with $B_s \& D_s, \psi \& \Upsilon: v_c = 0.7$.
 - no annihilation to gluons

Fermilab Today

Fermilab Result of the Week

DØ

Fermilab Result of the Week

CDF

4:00 p.m. One West

Joint Experimental Theoretical Physics Seminar Saverio D'Auria, University of Glasgow B_c : Fully Reconstructed Decays and Mass Measurement at CDF

QCD Theory & B_c

- Three main tools
 - potential models
 - potential NRQCD
 - lattice QCD
- All treat both quarks as non-relativistic

• charmed quark is pushing it,
$$v_c^2 = 0.5$$
.

Energy Scales

- Several energy scales in (this) quarkonium
 - $2m_b, 2m_c > 2 \text{ GeV}$
 - $m_b v_b = m_c v_c \approx 1000 \text{ MeV}$
 - $\frac{1}{2}m_c v_c^2 \approx 350 \text{ MeV}, \quad \frac{1}{2}m_b v_b^2 \approx 50 \text{ MeV}$
 - $\Lambda_{\rm QCD}$ ~ 500 MeV

NRQCD

 $\doteq \sum_{i} \quad \mathcal{C}_{i}(m_{Q}, m_{Q}/\mu) \quad \mathcal{O}_{i}(\mu/m_{Q}\upsilon^{n})$ short distances: $(m_{Q})^{-1}$, a: long distances: $(m_{Q}\upsilon^{n})^{-1}$, L: lumped into coefficients described by operators

(Same Lagrangian as HQET, but different power counting.)

Potential NRQCD

- Integrate out scale $m_Q v_Q$
- Hamiltonian contains kinetic terms, potentials, and their radiative corrections
- radiative corrections from $m_Q v_Q$ in pQCD
- bound-state solved a la positronium: assumes small shifts from scales Λ , $m_c v_c^2$

$$H = \frac{p_c^2}{2m_c} + \frac{p_b^2}{2m_b} - \frac{(p_c^2)^2}{8m_c^3} - \frac{(p_b^2)^2}{8m_b^3} + \dots + V(r)$$
$$V(r) = -\frac{C_F \alpha_s}{r} + C_F \alpha_s (1 + \alpha_s + \dots) \left(\frac{1}{4m_c^2} + \frac{1}{4m_b^2}\right) 4\pi \delta(\mathbf{r}) + \dots$$

Potential Models

- Truncate at leading order (in α_s , v^2).
- Linear confining potential added by hand.
- Potential model α_{s} , m_{Q} not connected to QCD Lagrangian α_{s} , m_{Q} .
- Provide excellent empirical understanding.

Lattice Calculation

- Ian Allison, Christine Davies, Alan Gray, ASK, Paul Mackenzie, & James Simone
 - conference: hep-lat/0409090
 - publication: hep-lat/0411027
- Prediction: α_s , m_b , m_c taken from bottomonium and charmonium
- Use latNRQCD for *b* and Fermilab for *c*.

Essentials

• We calculate two mass splittings

 $\Delta_{\psi\Upsilon} = m_{B_c} - \frac{1}{2}(\bar{m}_{\psi} + m_{\Upsilon}) \quad \text{quarkonium baseline}$ $\Delta_{D_sB_s} = m_{B_c} - (m_{D_s} + m_{B_s}) \quad \text{heavy-light baseline}$

- Everything is gold-plated, in the sense that the mesons are all stable, and far from threshold.
- Chiral extrapolations mild.

Isolating Lowest State

Correlator is sum of exponentials, lowest exponent is m_{B_c}

Error Cancellation

- Correlated statistics
- Unphysical shift in rest mass m
- Contributions from higher-in-v² operators, at least from quarkonium baseline.

Chiral Extrapolation

Lattice Spacing Dependence

at lighter of the two light masses

Error Analysis

- Statistical error is straightforward & small.
- Uncertainty from a^{-1} , m_b , m_c easy to propagate: latter two are ±10, ±5 MeV.
- Main problem is to estimate the discretization effect for the heavy quarks

Discretization Effects

(short distance mismatch) • (matrix element)

- Use calculations of tree-level mismatches
- Wave hands for one-loop mismatches
- Estimate matrix elements in potential models
- Check framework with other calculations

Hyperfine *i*Σ•B

• The mismatch of the hyperfine interaction is $\alpha_s a b_B(m_0 a) \times \bar{h} i \mathbf{\Sigma} \cdot \mathbf{B} h$

in both NRQCD and Fermilab Lagrangians.

- Estimate coefficient by comparing the simulation hyperfine splitting with experiment, where latter is known.
- Propagate to m_{B_c} and m_{Υ} .

Darwin D•E

• The mismatch of the Darwin interaction is $\{\alpha_s, 1\}a^2b_{\text{Darwin}}(m_0a) imes ar{h} m{D} \cdot m{E}h$

for NRQCD, Fermilab.

- Latter dominates; use known form of the coefficient and (Richardson) potential model estimate of matrix element.
- Matrix element is small.

Relativistic $(p^2)^2 \& p_i^4$

- The mismatch of the Darwin interaction is $\{\alpha_s, 1\}a^3b_4(m_0a) \times \{\bar{h}(p^2)^2h, \bar{h}\sum_i p_i^4h\}$ for NRQCD, Fermilab.
- Latter dominates; use known form of the coefficient and (Richardson) potential model estimate of matrix element.
- Matrix element is not small, but check total estimate with charmonium IP-IS.

0 0						-						
operator	m_{B_c}	$\frac{1}{2}\bar{m}_{\psi}$	$rac{1}{2}m\Upsilon$	$\Delta_{\psi\Upsilon}$	\bar{m}_{D_s}	\bar{m}_{B_s}	$\Delta_{D_s B_s}$					
	$a = \frac{1}{8}$ fm											
$\Sigma \cdot B$	-14	0	+3	-17	0	0	-14					
Darwin	-3	-3		± 1	-4	_	+1					
$(\boldsymbol{D}^2)^2$	+34	+10	± 3	+24	—	_	+34					
D_i^4	+16	+5	± 2	+11	—	_	+16					
total				+18			+37					
	$a = \frac{1}{11}$ fm											
$\mathbf{\Sigma} \cdot \mathbf{B}$	-12	0	+3	-15	0	0	-12					
Darwin	-2	-2		± 1	-2	_						
$(\boldsymbol{D}^2)^2$	+17	+5	± 3	+12	_	_	+17					
D_i^4	+7	+2	± 2	+5	—	_	+7					
total				+2			+12					

TABLE I: Estimated shifts in masses and the splittings $\Delta_{\psi\Upsilon}$ and $\Delta_{D_sB_s}$. Entries in MeV. Dashes (—) imply the entry is negligible.

Results

• Splittings:

$$\Delta_{\psi\Upsilon} = 39.8 \pm 3.8 \pm 11.2^{+18}_{-0} \text{ MeV}, \Delta_{D_sB_s} = -\left[1238 \pm 30 \pm 11^{+0}_{-37}\right] \text{ MeV},$$

• Meson mass:

$$m_{B_c} = 6304 \pm 4 \pm 11^{+18}_{-0} \text{ MeV},$$

$$m_{B_c} = 6243 \pm 30 \pm 11^{+37}_{-0} \text{ MeV},$$

More checks on quarkonium baseline, so it is our main result.

Compare with Models

Compare with CDF

Summary

- Results for leptonic and semi-leptonic D decays and the mass of the meson.
- Estimates of uncertainties.
- Agreement with BES, CLEO, FOCUS, and CDF with similar time-scale and error, including predictions.

pre- pref.

- I.a. Earlier; before; prior to: prehistoric.
 - b. Preparatory; preliminary: premedical.
 - c. In advance: prepay.
- 2. Anterior; in front of: preaxial.

[Middle English, from Old French, from Latin prae-, from prae, before, in front. See per1 in Indo-European Roots.]