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Form Factors

I. INTRODUCTION

In flavor physics the Cabbibo-Kobayashi-Maskawa (CKM) matrix element Vcb plays an
important role. Much of the phenomenology of CP violation centers around the unitarity
triangle, and a precise value of |Vcb| is needed to locate the triangle’s apex in the complex
plane. As a fundamental parameter of the Standard Model, Vcb sometimes appears in unex-
pected places. For example, the Standard Model prediction of the K0-K̄0 mixing parameter
εK is very sensitive to |Vcb| [1].

The determination of |Vcb| is made through inclusive and exclusive semileptonic B decays,
but at present both methods are limited by theoretical uncertainties. The inclusive method
requires a reliable calculation of the total semileptonic decay rate of the B meson, which
can be done using the heavy quark expansion [2,3]. Ultimately this method is limited by
the breakdown of local quark-hadron duality, which is difficult to estimate. The exclusive
method, on the other hand, requires a theoretical calculation of the form factor FB→D∗ of
B̄ → D∗lν̄ decay. In this paper we take a step towards reducing the uncertainty in the
exclusive method, by devising a precise method to compute the form factor at zero recoil in
lattice QCD.

The differential rate for the semileptonic decay B̄ → D∗lν̄l is given by

dΓ

dw
=

G2
F

4π3
m3

D∗(mB − mD∗)2
√

w2 − 1G(w)|Vcb|2|FB→D∗(w)|2, (1.1)

where w = v′ · v is the velocity transfer from the initial state (with velocity v) to the final
state (with velocity v′). The velocity transfer is related to the momentum q transferred
to the leptons by q2 = m2

B − 2wmBmD∗ + m2
D∗ , and it lies in the range 1 ≤ w < (m2

B +
m2

D∗)/2mBmD∗ . The function

G(w) =
w + 1

12

(
5w + 1 +

8w(w − 1)mBmD∗

(mB − mD∗)2

)
(1.2)

has a kinematic origin, with G(1) = 1. Thus, given the form factor FB→D∗(w), one can use
the measured decay rate to determine |Vcb|.

One makes use of the zero-recoil point w = 1, even though the phase-space factor
√

w2 − 1
suppresses the event rate, because then theoretical uncertainties are under better control.
For w > 1, FB→D∗(w) is a linear combination of several form factors of B̄ → D∗ transitions
mediated by the vector and axial vector currents. At zero recoil, however,

FB→D∗(1) = hA1(1), (1.3)

where hA1 is a form factor of the axial vector current Aµ, namely,

〈D∗(v)|Aµ|B̄(v)〉 = i
√

2mB 2mD∗ ε′
µ
hA1(1). (1.4)

More importantly, heavy-quark symmetry plays an essential role in constraining hA1(1),
leading to the simple heavy quark expansion [4,5]

hA1(1) = ηA

[
1 − %V

(2mc)2
+

2%A

2mc 2mb
− %P

(2mb)2

]
, (1.5)
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This method does not work as it stands for the B̄ → D∗lν̄ decay form
factors. The axial vector current mediates this decay, and it is neither con-
served nor normalized. We will deal separately with this case in another
paper.

This paper is organized as follows. Section 2 contains a general discussion
of form factors for the exclusive decay B̄ → Dlν̄. Sections 3 and 4 discuss
heavy quark effective theory and the 1/mQ expansion in the continuum and
with the lattice action used here. Section 5 contains details of the numerical
calculations. Sections 6–9 present our results. Sections 6 and 7 discuss the
form factor h+ and its mass dependence. Sections 8 and 9 do likewise for h−.
We compare the results from the fits of the mass dependence to corresponding
results from QCD sum rules in Sec. 10. The values of h+(1) and h−(1) at
the physical quark masses are combined in Sec. 11 into a result for the form
factor FB→D(1), which with experimental data determines |Vcb|. We give our
conclusions in Sec. 12.

2 B̄ → Dlν̄ form factors

The decay amplitude for B̄ → Dlν̄ is parametrized with two form factors
h+(w) and h−(w) as

〈D(p′)|Vµ|B̄(p)〉 =
√

mBmD

[
hB→D

+ (w)(v + v′)µ + hB→D
− (w)(v − v′)µ

]
, (3)

where v and v′ are the velocities of the B and D mesons, respectively, and
w = v · v′. The square of the momentum transferred to the leptons is then
q2 = m2

B + m2
D − 2mBmDw. We denote by the symbol Vµ the physical

vector current, to distinguish it from currents in heavy quark effective theory
(HQET) and in lattice QCD.

The differential decay rate reads

dΓ(B̄ → Dlν̄)

dw
=

G2
F

48π3
(mB + mD)2m3

D(w2 − 1)3/2|Vcb|2|FB→D(w)|2, (4)

with

FB→D(w) = hB→D
+ (w) − mB − mD

mB + mD
hB→D
− (w). (5)

At zero recoil (v′ = v, so w = 1) one expects FB→D(1) to be close to one,
because of heavy quark symmetry. From (4) a determination of |Vcb| consists
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Error Budget

hA1
(1) = FB→D

∗

(1)

Monte Carlo Method
TABLE IV. Budget of statistical and systematic uncertainties for hA1(1) and 1 − hA1(1). The

row labeled “total systematic” does not include uncertainty from fitting, which is lumped with the
statistical error. The statistical error is that after chiral extrapolation.

uncertainty hA1 1 − hA1

(%)

statistics and fitting +0.0238 −0.0173 +27 −20

adjusting mc and mb +0.0066 −0.0068 + 8 − 8
α2

s ±0.0082 ± 9

αs(Λ̄/2mQ)2 ±0.0114 ±13
(Λ̄)3/(2mQ)3 ±0.0017 ± 2
a dependence +0.0032 −0.0141 + 4 −16

chiral +0.0000 −0.0163 + 0 −19
quenching +0.0061 −0.0143 + 7 −16

total systematic +0.0171 −0.0302 +20 −35
total (stat ⊕ syst) +0.0293 −0.0349 +34 −40

heavy quark mass dependence (Sec. VIB); matching lattice gauge theory to HQET and
QCD (Sec. VIC); lattice spacing dependence (Sec. VID); light (spectator) quark mass
dependence (Sec. VIE); and the quenched approximation (Sec. VIF). In Table IV the
statistical uncertainty is added in quadrature to that from fitting, as discussed in Sec. VIA.
As outlined in Sec. III, statistical uncertainties are computed with the bootstrap method
and full covariance matrices.

A. Fitting and excited states

We define χ2 in our fits with the full covariance matrix. For the plateau fits to R(t)

χ2 =
∑
t1,t2

[R(t1) − Rfit] σ
−2(t1, t2) [R(t2) − Rfit] . (6.1)

Because the numerical data are so highly correlated, some components of the (inverse)
matrix σ−2(t1, t2) cannot be determined well. These components are discarded, according
to singular value decomposition (SVD), by eliminating eigenvectors of σ2 whose eigenvalue
λ < rSVDλmax, with rSVD small. We find we have to set rSVD ∼ 10−2 to remove the noisy
eigenvectors from χ2 in Eq. (6.1).

A potential drawback of the double ratio technique is that an early plateau could be
induced. We cope with this issue by trying many fit ranges for the time ts of the current. In
general, fits to a constant have good χ2 and agree for fit ranges within the plateaus clearly
seen in Fig. 1. For each ensemble of lattice gauge fields we choose a single range for ts for
all three ratios and all heavy quark mass combinations. In each case, the range is chosen to
give small statistical error on Rfit, while maintaining a central value close to that from short
intervals centered on T/4.

The expressions in Eqs. (2.19)–(2.21), relating three-point correlation functions to matrix
elements, suppress terms from radial excitations of the desired, lowest-lying states. Because
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Space-time Lattice
a

L = N
S
a

L
4
 =

 N
4
a

• quarks live on sites

• gauge fields live on links

• gauge invariance

• confinement emerges simply

U(x, x + aeµ) = Pe

∫
a

0
ds Aµ(x+seµ)

ψ̄(x)U(x, x + aeµ)ψ(x + aeµ)

ψ(x), ψ̄(y)

K. Wilson, 1974



• Integrate the functional integral numerically 
(with finesse and brute force):

M = [D/ + m]lat Sg = lattice gauge action

• G = M–1 (quark propagators): expensive

• det M (sea quark loops): very expensive

∫
DADψDψ̄ ψ̄uγ5ψd(x)ψ̄dγ5ψu(y) e−Sg−ψ̄Mψ =∫

DA tr[Gd(x, y)γ5Gu(y, x)γ5] detM e−Sg



• Only feasible integration method is Monte 
Carlo with importance sampling.

• ensembles of a few hundred lattice gauge 
fields yield statistical errors of a few %.

• active industry to devise better algorithms.

• details not familiar to non-experts, but errors 
usually not underestimated by the experts.



〈
D(t′)b̄γµc(t)B†(0)

〉
=

∑

n,m

〈Dm|b̄γµc|Bn〉×

〈0|D̂|Dm〉〈Bn|B̂|0〉e−mBn
t−mDm

(t′−t)

〈
b̄γ4γ5u(t)B†(0)

〉
=

∑

n

〈0|b̄γ4γ5u|Bn〉〈Bn|B̂|0〉e−mBn
t

Masses and Matrix Elements

〈
B(t)B†(0)

〉
=

∑

n

|〈Bn|B̂|0〉|2 exp(−mBn
t)

mass

decay constant

form factor



Fitting Methods

• Key issue here is controlling contribution 
from excited states.

• Larger t helps, but noise grows.

• Matrix correlator

• Fit to several exponentials, but constrain 
higher ones “to be sensible”.

• Like resolving lifetimes of several isotopes.

〈Bi(t)B
†
j (0)〉



Double Ratios

Many uncertainties cancel: a key to B → D(*)lν
(also to K → πlν)

R+ = 〈D|b̄γ4c|B〉〈B|c̄γ4b|D〉
〈D|c̄γ4c|D〉〈B|b̄γ4b|B〉

→ h+(1)

R− = 〈D(p)|b̄γic|B〉〈D(p)|b̄γ4b|D〉
〈D(p)|b̄γ4c|B〉〈D(p)|c̄γib|D〉

→ h−(1)

R1 = 〈D∗|b̄γ4c|B∗〉〈B|c̄γ4b|D〉
〈D∗|c̄γ4c|D∗〉〈B∗|b̄γ4b|B∗〉

→ h1(1)

RA1
= 〈D∗|b̄γiγ5c|B〉〈B∗|c̄γiγ5b|D〉

〈D∗|c̄γiγ5c|D〉〈B∗|b̄γiγ5b|B〉
→ ȟA1

(1)

R+,R1,RA1
needed to obtain hA1

(1)
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∗

(1)
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Adjusting Masses

• Lattice gauge theory gives a definition of QCD.

• Use 1 + nf hadronic inputs to deduce a in fm 

and fix the (bare) quark masses.

• Subsequent calculations are predictions, i.e., use 
same bare gauge coupling and quark masses.

• Have to propagate (statistical and systematic) 
uncertainties of the inputs to predictions.
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matrix σ−2(t1, t2) cannot be determined well. These components are discarded, according
to singular value decomposition (SVD), by eliminating eigenvectors of σ2 whose eigenvalue
λ < rSVDλmax, with rSVD small. We find we have to set rSVD ∼ 10−2 to remove the noisy
eigenvectors from χ2 in Eq. (6.1).

A potential drawback of the double ratio technique is that an early plateau could be
induced. We cope with this issue by trying many fit ranges for the time ts of the current. In
general, fits to a constant have good χ2 and agree for fit ranges within the plateaus clearly
seen in Fig. 1. For each ensemble of lattice gauge fields we choose a single range for ts for
all three ratios and all heavy quark mass combinations. In each case, the range is chosen to
give small statistical error on Rfit, while maintaining a central value close to that from short
intervals centered on T/4.

The expressions in Eqs. (2.19)–(2.21), relating three-point correlation functions to matrix
elements, suppress terms from radial excitations of the desired, lowest-lying states. Because
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Full QCD has (expensive) quark loops.

Quenched Approximation

• Replace det M with 1, and compensate by shifting bare 
gauge coupling and bare masses.  “Dielectric”.

• Arguably OK if all light quarks had mass mq ~ Λ.

• This error will go away in future calculations.



Unquenched QCD

• Only one method for det M is fast enough 
to generate a realistic sea.

• “improved staggered quarks”

• Price for speed is an assumption that has 
not been proven rigorously.

• also not disproven

• for flavor physics, the stakes are high so we 
will have to settle this
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Tests
• D → Klν, D → πlν:

•  

• fDs
, fD:

•  

• Bc mass:

fD = 225
+11
−13 ± 21 MeV

[hep-lat/0410030]

mBc
= 6304 ± 12

+18
−0 MeV

[hep-lat/0411027]

mBc
= 6287 ± 5 MeV

CDF, W&C seminar, 12/03/04

fD = 202 ± 41 ± 17 MeV

CLEO[hep-lat/0411050]

fD→K
+ (0) = 0.78(5),

fD→π
+ (0) = 0.86(9)fD→K

+

BES [hep-ex/0406028]

CLEO [hep-ex/0407035]

fD→K
+ (0) = 0.73(3)(7),

fD→π
+ (0) = 0.87(3)(9)fD→K

+

[hep-ph/0408306]



D → Klν vs. q2

Fig. 4. The background subtracted f+(q2) (diamonds with error bars) is compared
to a pole form with mpole = 1.93 GeV/c2 (solid curve) , a modified pole form
with α = 0.28 (dashed curve) , and the unquenched, Lattice QCD, calculations
given in reference [1] (triangles with no error bars). This form factor is for the
process D0 → K−µ+ν. The α and mpole used for the plots are obtained using the
two-dimensional, parameterized fit.

Fig. 5. Summary of mpole measurements. All data are consistent with a weighted
average pole mass of mpole = 1.91 ± 0.04 GeV/c2. The upper solid line shows the
spectroscopic pole mass at mD∗

s
. The lower solid line and two dashed lines represent

the weighted average and its error. Our weighted average of all data is 5.1 σ lower
than this.

We also find that mpole for D0 → π−µ+ν is mpole = 1.91+0.30
−0.15 ± 0.07 GeV/c2.

This value is compatible with our value for the pole mass for D0 → K−µ+ν.
In the naive pole dominance model, the mpole for D0 → π−µ+ν would be at
the mass of the D∗+ and would therefore lie lower in mass than mD∗

s
expected

for D0 → K−µ+ν.

5 Acknowlegments

We wish to acknowledge the assistance of the staffs of Fermi National Ac-
celerator Laboratory, the INFN of Italy, and the physics departments of the

12

q2 (GeV2)

hep-ex/0410037

Okamoto et al.
[Fermilab/MILC]

[f
+
(q

2
)/

f +
(0

)]
D
→

K



TABLE IV. Budget of statistical and systematic uncertainties for hA1(1) and 1 − hA1(1). The

row labeled “total systematic” does not include uncertainty from fitting, which is lumped with the
statistical error. The statistical error is that after chiral extrapolation.

uncertainty hA1 1 − hA1

(%)

statistics and fitting +0.0238 −0.0173 +27 −20

adjusting mc and mb +0.0066 −0.0068 + 8 − 8
α2

s ±0.0082 ± 9

αs(Λ̄/2mQ)2 ±0.0114 ±13
(Λ̄)3/(2mQ)3 ±0.0017 ± 2
a dependence +0.0032 −0.0141 + 4 −16

chiral +0.0000 −0.0163 + 0 −19
quenching +0.0061 −0.0143 + 7 −16

total systematic +0.0171 −0.0302 +20 −35
total (stat ⊕ syst) +0.0293 −0.0349 +34 −40

heavy quark mass dependence (Sec. VIB); matching lattice gauge theory to HQET and
QCD (Sec. VIC); lattice spacing dependence (Sec. VID); light (spectator) quark mass
dependence (Sec. VIE); and the quenched approximation (Sec. VIF). In Table IV the
statistical uncertainty is added in quadrature to that from fitting, as discussed in Sec. VIA.
As outlined in Sec. III, statistical uncertainties are computed with the bootstrap method
and full covariance matrices.

A. Fitting and excited states

We define χ2 in our fits with the full covariance matrix. For the plateau fits to R(t)

χ2 =
∑
t1,t2

[R(t1) − Rfit] σ
−2(t1, t2) [R(t2) − Rfit] . (6.1)

Because the numerical data are so highly correlated, some components of the (inverse)
matrix σ−2(t1, t2) cannot be determined well. These components are discarded, according
to singular value decomposition (SVD), by eliminating eigenvectors of σ2 whose eigenvalue
λ < rSVDλmax, with rSVD small. We find we have to set rSVD ∼ 10−2 to remove the noisy
eigenvectors from χ2 in Eq. (6.1).

A potential drawback of the double ratio technique is that an early plateau could be
induced. We cope with this issue by trying many fit ranges for the time ts of the current. In
general, fits to a constant have good χ2 and agree for fit ranges within the plateaus clearly
seen in Fig. 1. For each ensemble of lattice gauge fields we choose a single range for ts for
all three ratios and all heavy quark mass combinations. In each case, the range is chosen to
give small statistical error on Rfit, while maintaining a central value close to that from short
intervals centered on T/4.

The expressions in Eqs. (2.19)–(2.21), relating three-point correlation functions to matrix
elements, suppress terms from radial excitations of the desired, lowest-lying states. Because
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Discretization Effects

• Putting field theory onto space-time lattice 
gives an non-perturbative ultraviolet cutoff.

• Creates discretization effects at non-zero a.

• analogous to discrete approximations to 
partial differential equations

• complicated by renormalization

• in computer a is always non-zero



Symanzik LE£

• Symanzik proposed a continuum effective 
field theory to describe cutoff effects

• Separates cutoff effects into short-distance 
coefficients and long-distance operators.

LLGT
.
= LSym

LSym = LQCD +
∑

i

asiKi(g
2, mqa;µa) Oi(µ)

details of
lattice



• Can be used to make back-of-the-envelope 
estimates of cutoff effects.

• Proven to all orders in perturbative QCD.

• with mathematicians’ rigor for Wilson fermions

• with physicists’ rigor for staggered fermions

• Hard to see what would go wrong non-
perturbatively.



Symanzik Improvement

• The Symanzik effective theory provides a 
strategy for improving the discretization: 
reduce the for any observable, and the 
LE£ shows that it is reduced everywhere.

• If a is only the short distance, it justifies a 
simple Ansatz—O(a), O(a2)—for  
extrapolating to the continuum limit.

Ki



TABLE IV. Budget of statistical and systematic uncertainties for hA1(1) and 1 − hA1(1). The

row labeled “total systematic” does not include uncertainty from fitting, which is lumped with the
statistical error. The statistical error is that after chiral extrapolation.

uncertainty hA1 1 − hA1

(%)

statistics and fitting +0.0238 −0.0173 +27 −20

adjusting mc and mb +0.0066 −0.0068 + 8 − 8
α2

s ±0.0082 ± 9

αs(Λ̄/2mQ)2 ±0.0114 ±13
(Λ̄)3/(2mQ)3 ±0.0017 ± 2
a dependence +0.0032 −0.0141 + 4 −16

chiral +0.0000 −0.0163 + 0 −19
quenching +0.0061 −0.0143 + 7 −16

total systematic +0.0171 −0.0302 +20 −35
total (stat ⊕ syst) +0.0293 −0.0349 +34 −40

heavy quark mass dependence (Sec. VIB); matching lattice gauge theory to HQET and
QCD (Sec. VIC); lattice spacing dependence (Sec. VID); light (spectator) quark mass
dependence (Sec. VIE); and the quenched approximation (Sec. VIF). In Table IV the
statistical uncertainty is added in quadrature to that from fitting, as discussed in Sec. VIA.
As outlined in Sec. III, statistical uncertainties are computed with the bootstrap method
and full covariance matrices.

A. Fitting and excited states

We define χ2 in our fits with the full covariance matrix. For the plateau fits to R(t)

χ2 =
∑
t1,t2

[R(t1) − Rfit] σ
−2(t1, t2) [R(t2) − Rfit] . (6.1)

Because the numerical data are so highly correlated, some components of the (inverse)
matrix σ−2(t1, t2) cannot be determined well. These components are discarded, according
to singular value decomposition (SVD), by eliminating eigenvectors of σ2 whose eigenvalue
λ < rSVDλmax, with rSVD small. We find we have to set rSVD ∼ 10−2 to remove the noisy
eigenvectors from χ2 in Eq. (6.1).

A potential drawback of the double ratio technique is that an early plateau could be
induced. We cope with this issue by trying many fit ranges for the time ts of the current. In
general, fits to a constant have good χ2 and agree for fit ranges within the plateaus clearly
seen in Fig. 1. For each ensemble of lattice gauge fields we choose a single range for ts for
all three ratios and all heavy quark mass combinations. In each case, the range is chosen to
give small statistical error on Rfit, while maintaining a central value close to that from short
intervals centered on T/4.

The expressions in Eqs. (2.19)–(2.21), relating three-point correlation functions to matrix
elements, suppress terms from radial excitations of the desired, lowest-lying states. Because
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Heavy Quarks in LGT

• With heavy quarks there are two short 
distances, a and mQ

–1.

• In practice mQa is of order 1.

• Symanzik’s split into “QCD + small 
corrections” breaks down.



Heavy Quark Theory

• In many aspects of heavy quark physics, 
including the bound-state problem, the scale 
mQ decouples—heavy quark symmetry.

• Heavy quark Lagrangian—the Lagrangian for 
heavy-quark effective theory (HQET) and 
non-relativistic QCD (NRQCD).



HQET for q̄Q

long distances: 1/Λ, L:
described by operators

short distances: 1/mQ, a:
lumped into coefficients

LQCD
.
= LHQ

LHQ = Llight − h̄v(m1 + iv · D)hv

+
h̄vD2

⊥
hv

2m2
+ zB(µ)

h̄vsµνBµνhv

2m2

+zD(µ)
h̄vD⊥ · Ehv

4m2
2

+ zs.o.(µ)
h̄vsµνDµ

⊥
Eνhv

4m2
2

+ · · ·

=
∑

i Ci(mQ, mQ/µ) Oi(µ/Λ)



NRQCD for Q̄Q

long distances: 1/mQυn, L:
described by operators

short distances: 1/mQ, a:
lumped into coefficients

LQCD
.
= LHQ

LHQ = Llight − h̄v(m1 + iv · D)hv +
h̄vD2

⊥
hv

2m2

+zB(µ)
h̄vsµνBµνhv

2m2
− zR(µ)

h̄v(D2
⊥

)2hv

8m3
2

+zD(µ)
h̄vD⊥ · Ehv

4m2
2

+ zs.o.(µ)
h̄vsµνDµ

⊥
Eνhv

4m2
2

+ · · ·

.
=

∑
i Ci(mQ, mQ/µ) Oi(µ/mQυn)



Lattice NRQCD Fermilab Method

LQCD

↓
LHQ

↓
LLGT

↓
LHQ(a)

↓
LHQ

↓
LQCD

LQCD

↓
LLGT

↓
LHQ(a)

↓
LHQ

↓
LQCD



HQET & LGT

• The application of heavy-quark theory to 
understand the cutoff effects is essential in 
the calculations of B → D(*)lν form factors.

• In particular, need HQET formalism to 
show that mQ

–1 corrections to £ and J yield 

mQ
–2 corrections to .h+, h1, ȟA1



I. INTRODUCTION

In flavor physics the Cabbibo-Kobayashi-Maskawa (CKM) matrix element Vcb plays an
important role. Much of the phenomenology of CP violation centers around the unitarity
triangle, and a precise value of |Vcb| is needed to locate the triangle’s apex in the complex
plane. As a fundamental parameter of the Standard Model, Vcb sometimes appears in unex-
pected places. For example, the Standard Model prediction of the K0-K̄0 mixing parameter
εK is very sensitive to |Vcb| [1].

The determination of |Vcb| is made through inclusive and exclusive semileptonic B decays,
but at present both methods are limited by theoretical uncertainties. The inclusive method
requires a reliable calculation of the total semileptonic decay rate of the B meson, which
can be done using the heavy quark expansion [2,3]. Ultimately this method is limited by
the breakdown of local quark-hadron duality, which is difficult to estimate. The exclusive
method, on the other hand, requires a theoretical calculation of the form factor FB→D∗ of
B̄ → D∗lν̄ decay. In this paper we take a step towards reducing the uncertainty in the
exclusive method, by devising a precise method to compute the form factor at zero recoil in
lattice QCD.

The differential rate for the semileptonic decay B̄ → D∗lν̄l is given by

dΓ

dw
=

G2
F

4π3
m3

D∗(mB − mD∗)2
√

w2 − 1G(w)|Vcb|2|FB→D∗(w)|2, (1.1)

where w = v′ · v is the velocity transfer from the initial state (with velocity v) to the final
state (with velocity v′). The velocity transfer is related to the momentum q transferred
to the leptons by q2 = m2

B − 2wmBmD∗ + m2
D∗ , and it lies in the range 1 ≤ w < (m2

B +
m2

D∗)/2mBmD∗ . The function

G(w) =
w + 1

12

(
5w + 1 +

8w(w − 1)mBmD∗

(mB − mD∗)2

)
(1.2)

has a kinematic origin, with G(1) = 1. Thus, given the form factor FB→D∗(w), one can use
the measured decay rate to determine |Vcb|.

One makes use of the zero-recoil point w = 1, even though the phase-space factor
√

w2 − 1
suppresses the event rate, because then theoretical uncertainties are under better control.
For w > 1, FB→D∗(w) is a linear combination of several form factors of B̄ → D∗ transitions
mediated by the vector and axial vector currents. At zero recoil, however,

FB→D∗(1) = hA1(1), (1.3)

where hA1 is a form factor of the axial vector current Aµ, namely,

〈D∗(v)|Aµ|B̄(v)〉 = i
√

2mB 2mD∗ ε′
µ
hA1(1). (1.4)

More importantly, heavy-quark symmetry plays an essential role in constraining hA1(1),
leading to the simple heavy quark expansion [4,5]

hA1(1) = ηA

[
1 − %V

(2mc)2
+

2%A

2mc 2mb
− %P

(2mb)2

]
, (1.5)

2

In Ref. [14] we studied the heavy-quark mass dependence of h+(1), using a fit to obtain the
1/m2

Q and 1/m3
Q corrections. In this work we employ this double ratio and two similar ones.

The first additional double ratio is

R1 =
〈D∗|c̄γ4b|B̄∗〉〈B̄∗|b̄γ4c|D∗〉
〈D∗|c̄γ4c|D∗〉〈B̄∗|b̄γ4b|B̄∗〉 = |h1(1)|2, (1.8)

where the pseudoscalar mesons B̄ and D, and their form factor h+(1), are replaced with the
vector mesons B̄∗ and D∗, and their form factor h1(1):

〈D∗(v)|Vµ|B̄∗(v)〉 = i
√

2mB∗ 2mD∗ ε′ · ε vµh1(1). (1.9)

The second additional double ratio is

RA1 =
〈D∗|c̄γjγ5b|B̄〉〈B̄∗|b̄γjγ5c|D〉
〈D∗|c̄γjγ5c|D〉〈B̄∗|b̄γjγ5b|B̄〉 =

hB̄→D∗

A1
(1)hD→B̄∗

A1
(1)

hD→D∗

A1
(1)hB̄→B̄∗

A1
(1)

≡ |ȟA1(1)|2, (1.10)

where the axial vector current mediates pseudoscalar-to-vector transitions, leading to a
double ratio of the form factor hA1. As stressed in Ref. [14], the double ratios overcome
two of the obstacles in the lattice calculation, because numerator and denominator are so
similar. Statistical fluctuations in the numerator and denominator are very highly correlated
and largely cancel in the ratio. Also, most of the normalization uncertainty in the lattice
currents cancels, leaving only a residual normalization factor that can be computed reliably
in perturbation theory [18]. Indeed, all uncertainties scale as R− 1, rather than as R.

Note that the double ratio RA1 does not yield the desired form factor hB̄→D∗

A1
, but instead

the combination ȟA1 , which is itself a double ratio of form factors. One can, however, extract
hA1(1) from the three double ratios R+, R1, and RA1 , at least to the order in the heavy-
quark expansion given in Eq. (1.5). This possibility follows from the heavy quark expansions
for h+(1) and h1(1) [4,5],

h+(1) = ηV

[
1 − $P

(
1

2mc
− 1

2mb

)2
]
, (1.11)

h1(1) = ηV

[
1 − $V

(
1

2mc
− 1

2mb

)2
]
, (1.12)

and comparing to Eq. (1.5). In h+(1) and h1(1) the absence of terms of order 1/mQ [9] is
easily understood, because charge conservation requires h+(1) = h1(1) = 1 when mc = mb,
and because the matrix elements defining them are symmetric under the interchange mc ↔
mb. Similarly, the heavy-quark expansion of the form factor ratio ȟA1(1), obtained from
RA1 , is

ȟA1(1) = η̌A

[
1 − $A

(
1

2mc
− 1

2mb

)2
]
, (1.13)

which follows immediately from Eq. (1.5), defining η̌2
A = ηAcbηAbc/ηAccηAbb . Hence, by varying

the heavy quark masses in the lattice calculation of the double ratios R+, R1, and RA1 , one
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easily understood, because charge conservation requires h+(1) = h1(1) = 1 when mc = mb,
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4

1. calculate lattice versions of the above;
2. remove (lattice) short distance factors;
3. fit mass dependence to obtain ls;
4. reconstitute 



TABLE IV. Budget of statistical and systematic uncertainties for hA1(1) and 1 − hA1(1). The

row labeled “total systematic” does not include uncertainty from fitting, which is lumped with the
statistical error. The statistical error is that after chiral extrapolation.

uncertainty hA1 1 − hA1

(%)

statistics and fitting +0.0238 −0.0173 +27 −20

adjusting mc and mb +0.0066 −0.0068 + 8 − 8
α2

s ±0.0082 ± 9

αs(Λ̄/2mQ)2 ±0.0114 ±13
(Λ̄)3/(2mQ)3 ±0.0017 ± 2
a dependence +0.0032 −0.0141 + 4 −16

chiral +0.0000 −0.0163 + 0 −19
quenching +0.0061 −0.0143 + 7 −16

total systematic +0.0171 −0.0302 +20 −35
total (stat ⊕ syst) +0.0293 −0.0349 +34 −40

heavy quark mass dependence (Sec. VIB); matching lattice gauge theory to HQET and
QCD (Sec. VIC); lattice spacing dependence (Sec. VID); light (spectator) quark mass
dependence (Sec. VIE); and the quenched approximation (Sec. VIF). In Table IV the
statistical uncertainty is added in quadrature to that from fitting, as discussed in Sec. VIA.
As outlined in Sec. III, statistical uncertainties are computed with the bootstrap method
and full covariance matrices.

A. Fitting and excited states

We define χ2 in our fits with the full covariance matrix. For the plateau fits to R(t)

χ2 =
∑
t1,t2

[R(t1) − Rfit] σ
−2(t1, t2) [R(t2) − Rfit] . (6.1)

Because the numerical data are so highly correlated, some components of the (inverse)
matrix σ−2(t1, t2) cannot be determined well. These components are discarded, according
to singular value decomposition (SVD), by eliminating eigenvectors of σ2 whose eigenvalue
λ < rSVDλmax, with rSVD small. We find we have to set rSVD ∼ 10−2 to remove the noisy
eigenvectors from χ2 in Eq. (6.1).

A potential drawback of the double ratio technique is that an early plateau could be
induced. We cope with this issue by trying many fit ranges for the time ts of the current. In
general, fits to a constant have good χ2 and agree for fit ranges within the plateaus clearly
seen in Fig. 1. For each ensemble of lattice gauge fields we choose a single range for ts for
all three ratios and all heavy quark mass combinations. In each case, the range is chosen to
give small statistical error on Rfit, while maintaining a central value close to that from short
intervals centered on T/4.

The expressions in Eqs. (2.19)–(2.21), relating three-point correlation functions to matrix
elements, suppress terms from radial excitations of the desired, lowest-lying states. Because
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Chiral Extrapolation
• The algorithms for sea quarks (det M) and 

quark propagators are much too slow if the 
light quark mass is as small as down or up.

• Consequently, the pion cloud is not right.

• It can be corrected using chiral perturbation 
theory (ChPT) to guide an extrapolation...

• ... if the light quark masses in the computer are 
small enough.



χlog vs linear

Thanks to N. Yamada, S. Hashimoto, and T. Onogi

The plot compares 
JLQCD’s linear fit with 
one that feeds their slope 
into the χlog expression. 
ASK & Ryan, hep-ph/
0206058

Other Ansätze lie 
between these two.

ξf = fBs
/fB



Now add 2+1 (MILC) results from Wingate (HPQCD)

S. Aoki et al. [JlQCD], hep-lat/0307039 → PRL





Form Factors

• In the case of B → Dlν, the relevant internal 
state is D*π; the mπ

2 dependence is flat. 

• In the case of B → D*lν, the relevant 
internal state is Dπ; a cusp develops when

 mπ + mD < mD∗
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FIG. 5. Dependence of hA1(1) at β = 5.9 on the mass of the light spectator quark. Here m2
π

is the mass of the pseudoscalar meson consisting of two “light” quarks. The solid (dotted) lines

represent the best linear fit (error envelope). The lower (upper) curves with a cusp add to the
linear behavior the contribution in Eq. (6.6), taking gD∗Dπ = 0.60 (gD∗Dπ = 0.27).

E. Chiral extrapolation

The calculations discussed so far have a spectator quark whose mass is near that of
the strange quark. Figure 5 shows how hA1(1) changes for lighter spectator quarks, on the
lattice with β = 5.9, for which we have three values of the light quark mass. hA1(1) is
plotted against m2

π (in lattice units), which is a physical measure of the light quark mass.
Since the statistical errors in Fig. 5 are highly correlated, the downward trend in hA1(1) is
significant. The same trend is seen for β = 6.1. Extrapolating linearly in m2

π to the physical
pion, reduces the result in Eq. (6.4) to

hA1(1) = 0.9130+0.0238
−0.0173 (6.5)

and increases the statistical error. This value, using the average of the β = 5.9 and 6.1
lattices and the chiral extrapolation from β = 5.9, gives the central value in Eq. (1.14).

In the chiral expansion, the terms responsible for the linear behavior are formally of
order Λ̄2m2

π/(2mc 4πfπ)2. Terms of order Λ̄4/(2mc 4πfπ)2 are larger for the physical pion
mass, but are comparable for our artificially large pion masses. Randall and Wise [37] have
computed the m0

π effect at one loop in chiral perturbation theory. They find

#V (mπ)

(2mc)2
=

#V (mηs)

(2mc)2
+

g2
D∗Dπ

2

(
∆(c)

4πfπ

)2 [
ln

m2
ηs

m2
π

+ f(−xπ) − f(−xηs)

]
(6.6)

where m2
ηs

= 2m2
K is the mass of the pseudoscalar meson with two strange quarks, gD∗Dπ

is the D∗-D-π coupling, ∆(c) = mD∗ − mD = 142 MeV is the D∗-D mass splitting, and
xa = ∆(c)/ma (a = π, ηs). For gD∗Dπ we consider the range 0.27–0.60, which encompasses
estimates based on fits to experimental data (gD∗Dπ = 0.27+0.06

−0.03 [38]), quark models (gD∗Dπ ≈
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Prospects
(for B → D(*)lν)



Perturbative Matching

• The most important improvement needed 
(now that sea quarks are included) is better 
matching.

• Work in progress:

• higher-dimension operators: Oktay, ASK, ...

• perturbative part: El-Khadra, Nobes, Trottier; 
Aoki, Kayaba, Kuramashi, Yamada.



Chiral Extrapolation

• Will need to add cusp essentially by hand: 
there will be no sign whether the numerical 
data follow functional form of ChPT.

• Discretization effects (of light quarks) will 
have to be added to ChPT: Laiho.



TABLE IV. Budget of statistical and systematic uncertainties for hA1(1) and 1 − hA1(1). The

row labeled “total systematic” does not include uncertainty from fitting, which is lumped with the
statistical error. The statistical error is that after chiral extrapolation.

uncertainty hA1 1 − hA1

(%)

statistics and fitting +0.0238 −0.0173 +27 −20

adjusting mc and mb +0.0066 −0.0068 + 8 − 8
α2

s ±0.0082 ± 9

αs(Λ̄/2mQ)2 ±0.0114 ±13
(Λ̄)3/(2mQ)3 ±0.0017 ± 2
a dependence +0.0032 −0.0141 + 4 −16

chiral +0.0000 −0.0163 + 0 −19
quenching +0.0061 −0.0143 + 7 −16

total systematic +0.0171 −0.0302 +20 −35
total (stat ⊕ syst) +0.0293 −0.0349 +34 −40

heavy quark mass dependence (Sec. VIB); matching lattice gauge theory to HQET and
QCD (Sec. VIC); lattice spacing dependence (Sec. VID); light (spectator) quark mass
dependence (Sec. VIE); and the quenched approximation (Sec. VIF). In Table IV the
statistical uncertainty is added in quadrature to that from fitting, as discussed in Sec. VIA.
As outlined in Sec. III, statistical uncertainties are computed with the bootstrap method
and full covariance matrices.

A. Fitting and excited states

We define χ2 in our fits with the full covariance matrix. For the plateau fits to R(t)

χ2 =
∑
t1,t2

[R(t1) − Rfit] σ
−2(t1, t2) [R(t2) − Rfit] . (6.1)

Because the numerical data are so highly correlated, some components of the (inverse)
matrix σ−2(t1, t2) cannot be determined well. These components are discarded, according
to singular value decomposition (SVD), by eliminating eigenvectors of σ2 whose eigenvalue
λ < rSVDλmax, with rSVD small. We find we have to set rSVD ∼ 10−2 to remove the noisy
eigenvectors from χ2 in Eq. (6.1).

A potential drawback of the double ratio technique is that an early plateau could be
induced. We cope with this issue by trying many fit ranges for the time ts of the current. In
general, fits to a constant have good χ2 and agree for fit ranges within the plateaus clearly
seen in Fig. 1. For each ensemble of lattice gauge fields we choose a single range for ts for
all three ratios and all heavy quark mass combinations. In each case, the range is chosen to
give small statistical error on Rfit, while maintaining a central value close to that from short
intervals centered on T/4.

The expressions in Eqs. (2.19)–(2.21), relating three-point correlation functions to matrix
elements, suppress terms from radial excitations of the desired, lowest-lying states. Because
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New Error Budget(?)

hA1
(1) = FB→D

∗

(1)

±0.005
±0.003

±0.011

±0.003
±0.008

removed

±0.004



Prospects

• Lattice QCD should provide reliable results 
to help interpret experiments in flavor 
physics.

• My favorite paradigm

• use trees to measure CKM

• use loops to find new physics
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