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Welcome to Tsukuba!



Goals of lattice QCD
Understanding the dynamics 

of QCD

Confinement
Chiral symmetry breaking ―
pion as the Nambu-Goldston
boson
QCD in extreme conditions ―
finite temparature and density
Hadron-hadron interactions; 
pentaquark etc.

Precision calculation of 
hadron masses and matrix 
elements

Test of QCD as the theory of 
strong interaction
Determination of fundamental 
parameters
Inputs to phenomenological 
analysis ― kaon physics, B 
physics



30 years of lattice QCD
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Lattice QCD

Non-perturbative definition 
of QCD
Monte Carlo simulation is 
possible.

“First principles” calculation, 
but with approximations: 

– finite a
– finite L
– large mq

need extrapolations; source 
of systematic errors.

lattice size L ~2-3 fm

gauge field

quark field

lattice spacing a
~ 0.1-0.2 fm



Dynamical fermions

Calculating the fermion determinant 
= numerically very hard.

4 ( )
det( )

d x D m
d d e D m

ψ ψ
ψ ψ

/ +∫ = / +∫
Quenched:     neglect it
Unquenched: include it

Common trick: pseudo-fermion
4 † 2( )2 †| det( ) |

d x D m
D m d d e

φ φ
φ φ

−/ +∫/ + = ∫
― harder for smaller quark masses



Problem of chiral “extrapolation”

Chiral log

with a fixed coefficient.

Chiral extrapolation is 
required to reach the 
physical up and down 
quark masses.
Source of large 
systematic uncertainty.
Computationally very 
hard in the dynamical 
fermion simulations, 
especially with the 
Wilson-type fermions

2 2lnm mπ π

MILC coarse lattice

JLQCD, Nf=2



Note: ChPT

Chiral perturbation theory
– Gasser-Leutwyler in 80s
– describes the dynamics of Nambu-Goldston pions
– provides systematic expansion in p2 and mπ2
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How hard?

Computer time grows as 
1/mq

3

No guarantee that κc is 
really reached with the 
Wilson fermion = first 
order phase transition
Exceptional trajectory 
ΔH>>1 is often observed.

Kennedy@Lattice 2004

Really??

Advantage of fermion formulations having well-defined  
chiral limit.



Jumping to the chiral limit

Hope is to extract physical quantities without 
chiral extrapolation ― possible?
The advantage of the Ginsparg-Wilson fermions 
would become more apparent.
Interesting to see if they really work near the 
chiral limit.
Effects of dynamical fermions.



An immediate problem

Price one has to pay = finite volume effect.
On a L=1.5 fm lattice physical pion gives 
mπL~1; pion Compton wave-length is 2π times 
the lattice size. For smaller quark masses it is 
even longer.

Such region is known as the epsilon regime 
of QCD. 



QCD in the epsilon regime

Chiral Lagrangian
2

/ /† †Tr( ) Tr( )
4 2

f fi N i NF mU U e U e Uθ θ
µ µ

−Σ
= ∂ ∂ − +L

When m→0 (mπL<1), fluctuation of the zero momentum 
mode becomes important.

2 ( ) /
0( ) ei x FU x U ξ=

Expansion in terms of

and integrate over U0.

2
2

2 2 2

1m p
L F

π ε
Λ Λ
∼ ∼ ∼ Gasser-Leutwyler (1987)

ε-expansion: systematic analytical 
calculation is possible.



Analytic predictions
Leutwyler-Smilga (1992)

Quark mass dependence of the QCD partition function
Topological susceptibility
Sum rules for the eigenvalues of the Dirac operator

Verbaarschot-Zahed, Akemann, Damgaard, … (1993~)
Eigenvalue distribution of the Dirac operator from the 
Random Matrix Theory

Damgaard et al. (2002~)
Correlation functions in the epsilon regime

Can test the lattice simulation using these known relations; 
determine the fundamental parameters: F, Σ, LECs



Outline of this talk

1. Brief review of the Leutwyler-Smilga’s
predictions

2. Ginsparg-Wilson fermions
3. Lattice setup
4. Truncated Determinant Approximation for Nf=1
5. Numerical results for the partition function, etc.
6. Correlation functions



1. Brief review of the Leutwyler-
Smilga’s predictions



Partition function for Nf=1

No Nambu-Goldstone mode in the Nf=1 case. 
Freeze the momentum fluctuation in the εregime

exp[ Re( )]iZ V me θ= Σ

Partition function for each topological sector:

/ ( ) exp( )Z Z I m V m Vν ν= Σ − Σ
Topological susceptibility:

2 2 / ( 0)v Z Z m V mν
ν

ν = → Σ →∑



Partition function for Nf ≥ 2

2
/ /† †Tr( ) Tr( )

4 2
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= ∂ ∂ − +L

Degenerate vacua

At Nf=2,

for any fixed topology.
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Sum rules for eigenvalues
Derivative of Zν w.r.t. m
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Smilga, in “Handbook of QCD”
“The main interest here is not so much to 

“confirm” these exact theoretical results by 
computer, but, rather, to test lattice 
methods. This was a challenge for lattice 
people…”



2. Ginsparg-Wilson fermions



Chiral symmetry on the lattice

Chiral symmetry ― invariance under the chiral
transformation

Nielsen-Ninomiya theorem (1981) = no lattice 
Dirac operator to satisfy

– Right continuum limit
– No doublers
– Locality
– Chiral symmetry

natural, because we need axial U(1) anomaly

5 5;i iδψ αγ ψ δψ αψγ= =

5 5 0D Dγ γ+ =



Ginsparg-Wilson relation

Introduce a modified chiral transformation by 
Luscher (1998)

Invariant if D satisfies the Ginsparg-Wilson 
relation (1982).

5 5
1 11 ; 1
2 2

i aD i aDδψ αγ ψ δψ αψ γ⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

5 5 5D D aD Dγ γ γ+ =

Exact chiral symmetry is realized at finite a.



Consistent with anomaly
Fermion measure is not invariant under the modified 
chiral transformation.

Eigenvectors of the Dirac operator

The trace of γ5 vanishes unless there are zero modes 
λk=0, which appears from topologically non-trivial gauge 
configurations.

2 4
5; ln ( ) ( )n n n n k k

kn n

d d J d d J i d x u x u xψ ψ ψ ψ α γ−→ = ∑∏ ∏ ∫

*
5 5( ) ( ); ( ) ( )k k k k k kDu x u x D u x u xλ γ λ γ= =

4 41( ) ( ) Trd x u x u x n n q d x F F5 216k k R L
k

µν µνπ
γ = − = =∑∫ ∫

Atiyah-Singer index theorem



Eigenvalues for GW fermion

Using

one can show that the 
eigenvalues lie on a 
circle.
In the continuum limit 
they lie on the 
imaginary axis.

5 5 5
†

5 5

D D aD D

D D

γ γ γ

γ γ

+ =

=

5γ

Zero modes



Neuberger Dirac operator

Overlap Dirac operator ― Neuberger (1998)

†

1 1 ; 1 W
AD A aD

a A A

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦

WD D

Drawing stolen from M. Creutz’s write-up



3. Lattice setup: implementation 
of the overlap Dirac operator



Lattice setup

β=5.85, 104 lattice
a = 0.123 fm (or 1/a = 1.6 GeV)
V = (1.23 fm)4

MπL = 1 at m = 7 MeV
mΣV = 1 at m = 42 MeV
168, 290, 149 quenched configurations for |ν|=0, 
1, 2



Overlap Dirac operator

Overlap Dirac operator

For sgn(HW), 14 lowest eigenmodes of HW is 
treated exactly; the rest is approximated using the 
Chebyshev polynomial (order 100-200) to satisfy 
the accuracy 10-10

On an Itanium 2 (1.3 GHz, 3MB) workstation one 
multiplication of D takes about 10 sec.

[ ]5
1 1 sgn( )W

sD H
a

γ+
= +



Eigenvalues & eigenvectors

For each gauge config, 50 
lowest eigenvalues and 
their eigenvectors are 
calculated using the 
ARPACK (implicitly 
restarted Arnoldi method). 
They appear as pairs 
(λi,λi*); calculate

Topological charge is 
determined by counting 
the number of zero modes.

5 51 1 Re( )
2 2

Dγ γ λ+ +
=



Eigenvalue distribution

Away from the chiral
regime, it is consistent 
with a free quark form

3λ∼
independent of topology

Near the chiral limit, the distribution becomes sensitive 
to the topological charge; described well with the 
Random Matrix Theory.



Comparison with RMT
Distribution of the lowest lying mode:

Lines are from RMT (Nishigaki, Damgaard, Wettig
(1998))

Similar lattice observations by
Edwards, Heller, Kiskis, Narayanan (1999); Hasenfratz et al. 
(2002); Bietenholz, Jansen, Shcheredin (2003); Giusti, 
Luscher, Weisz, Wittig (2003); Galletly et al. (2003)



Note: Random Matrix Theory

Randomly distributed eigenvalues obey a partition function

Corresponds to the chiral lagrangian in the epsilon regime 
in the limit of N→∞.
The lowest lying eigenvalue distributes as

†/ 2Tr ( )
, †det f f

f

N N v W W
N

m iW
Z DW e

iW mν
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫
nxm matrix with ν=m-n and N=n+m

2 20 / 4 1 / 4
2( ) , ( ) ( ) , ...;z zP z ze P z zI z e z m Vν ν= − = −∝ ∝ = Σ



4. Truncated determinant 
approximation for Nf=1



Fermion determinant

The low-lying 
eigenmodes should be 
most relevant to the low 
energy physics.
Higher modes reflect  
short distance physics, 
sensitive to the lattice 
artifact. 

Reweighting the quenched 
config with a truncated 
determinant

Duncan, Eichten, Thacker (1998)
– Treat the low-lying mode 

exactly in Monte Carlo
– Higher mode could be 

included by an effective 
gauge action or multiboson.

( )2 2det( ) i
i

D m mλ+ = +∏

( )max 2 2

1

N

i
i

mλ
=

+∏



How effective?
Here we just neglect the effects of higher modes.

Their effect is approximately constant, and independent of 
topology.
Can be checked for each observable by varying Nmax.



Effect on the eigenvalue distribution

Cumulative density of the first eigenvalue:

Curves are expectations 
of RMT.



Disadvantages

0.4ma =

0.01ma =

0.001ma =

NOT exact
It may be possible to 
make it exact: Borici –
UV suppressed 
fermion.
Effective number of  
statistical samples is 
substantially smaller.

0ν =

1ν =

2ν =

( )
max

2 2
10

0

log
N

i
i

mλ
=
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5. Numerical results for the 
partition function, etc.



QCD partition function

For Nf=1, the QCD partition function is expected to 
behave as 

/ ( ) exp( )Z Z I m V m Vν ν= Σ − Σ

• Good agreemenet below

2m VΣ
• A fit yields

3(243MeV)Σ =



Topological susceptibility

Topological susceptibility 
should behave as

Well reproduced with

2 1

f

m V
N

ν = Σ

3(238MeV)Σ =

Earlier study by Kovacs (2001)



Leutwyler-Smilga sum rule

'

2

1 1
( ) 4( 1)n

n V
ν

λ ν
=

Σ +∑

LHS is quadratically
divergent; need UV 
cutoff and careful study 
of volume dependence.
Consider differences 
among different 
topological sectors.

3(236 MeV)Σ =



6. Correlation functions



Correlators in the epsilon regime

Once the properties of the vacuum is confirmed, 
the interest would be in the excitations.
ChPT analysis of meson correlation functions: 

– Damgaard et al. (2002, 2003)
– Giusti et al. (2003, 2004); Hernandez-Laine (2003)
– First numerical study: Giusti et al. (2004); 

Bietenholz et al. (2004)
Possibility to determine the parameters in ChPT: 
Fπ, Σ, LOCs w/o chiral extrapolation.



An example

In the quenched ChPT,
2 32

1 1 3 1 0
2 12

2

1 1 2 2

2
2 2

2 1

( ) (0) ( ) ( )
2

2 ( ) ( ) ( ) ( ) , 2 1

1 1 1 1 1( ) ( 1) , ( ) ,
24 30 2 2 12

P
c c

m TP t P L C c h c b Th
F N N

c I K I K b

th h
T

ν ν ν ν

ατ τ

ν νµ µ µ µ
µ µ

τ τ τ τ τ τ

+ + +

+ + − +

⎡ ⎤⎛ ⎞Σ
= − − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞⎛ ⎞

= − − = +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎡ ⎤ ⎛ ⎞= − − = − − =⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

Divergence in the massless limit 
Strong dependence on the toplogical charge
Allows to determine F, α, m0

2, in principle

0m Vµ ≡ Σ →



Lattice measurement

Very hard to solve the quark propagator near the 
massless limit.
Construction using the eigenvectors

saturates the PP correlator with the 50 eigenmodes to 
99.5%. Only below ma=0.008 and for ν≠0.
For moderate mass values, the preconditioning with the 
known eigenvectors works well as noticed by Giusti, 
Hoelbling, Luscher, Wittig (2003).

( ) (0)( ) (0) , ( ) ( ).i i
i i i

i i

u x uq x q Du x u x
m

λ
λ

= =
+∑



More about techniques

Low-mode saturation
– as discussed in the 

previous page
Low-mode averaging

– Source point can be freely 
chosen without extra cost 
for inversion.

– By averaging over lattice 
points, one can get much 
better statistics.

– Also proposed by Giusti et 
al. (2004)

exact

truncated

Low-mode averaging



A preliminary result

“pion correlator”

m = 10 MeV m = 5 MeV

ν=1 ν=2

ν=3

m = 2.5 MeV

Expected behavior:
22

2

1
( ) 2

t
m V T
ν ⎛ ⎞−⎜ ⎟Σ ⎝ ⎠

∼

A fit yields
3(300 MeV) , 110MeVFΣ

at Nf=0. m0=600 MeV is assumed.



Summary and Discussions



Issues…

To make the calculations exact, one must 
include the effects of higher modes. Is it 
feasible?
– Include them using the multi-boson-like 

algorithms. Highly non-local…
– Consider the truncated version as a new 

definition of the GW Dirac operator. 
Locality is okay --- Borici.



Truncated determinant algorithm

Separate the fermion determinant as

Explicitly calculate the “low” eigenvalues.
“high” eigenmodes are approximated by 
polynomial.

Then, introduce pseudo-fermions for each k
(multi-boson).

Duncan, Eichten, Thacker (1998)

low high det (det ) (det )H H Hλ λ= ⋅

2 2 1 2 2 1
1

1

det lim[det ( )] lim det[( ) ]

( ) const ( ) 1/ ;

n
n k kkn n

n
n k nk

H P H H

P z z z z z i

µ ν

µ ν

− −
=→∞ →∞

→∞=

= = − +

= − ⎯⎯⎯→ = +

∏
∏



UV suppressed fermions

Define the lattice Dirac operator such that the UV 
modes are suppressed in the determinant.

Eigenvalues become independent of gauge 
configurations above μ.
Locality is okay: analytic, 2πperiodic in the 
momentum space.
Alternative way to regularize the fermion field.

Borici (2002)

5 5tanh ;W
W W

aHD H D
a
µ γ γ

µ
= =



More issues…

As volume increases, the calculation of the 
eigenvalues/eigenvectors becomes much 
harder. What to do?
– Eigenvalue distributes more densely ~V; 

calculation cost ~ V2. Certainly much more 
difficult. Maybe one could treat the lowest 
few eigenmodes exactly and the rest with 
some other algorithms…



Summary

Using the overlap Dirac operator, the theoretical 
predictions in the epsilon regime are reproduced. 
They are related to the properties of the QCD 
vacuum.
The reweighting with the truncated determinant 
works reasonably well.
Application is broader: it is also possible to probe 
the low energy physics through the correlation 
functions.



Enjoy your stay!
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