Twisted Boundary Conditions

Jonathan Flynn
Contents

- θ-BC: twisted boundary conditions
- TChPT: twisted chiral perturbation theory
- Partial twisting
- Applications?
<table>
<thead>
<tr>
<th>Topic</th>
<th>Authors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N-N$ phase shifts</td>
<td>PF Bedaque</td>
<td>nucl-th/0402051</td>
</tr>
<tr>
<td>Pseudoscalar meson dispersion relation (quenched)</td>
<td>GM de Divitiis, R Petronzio and N Tantalo</td>
<td>hep-lat/0405002</td>
</tr>
<tr>
<td>θ-BC and two-particle states</td>
<td>GM de Divitiis and N Tantalo</td>
<td>hep-lat/0409154</td>
</tr>
<tr>
<td>ChPT analysis</td>
<td>CT Sachrajda and G Villadoro</td>
<td>hep-lat/0411033</td>
</tr>
</tbody>
</table>
Boundary Conditions

- PBC: lattice momenta quantised
 \[p_i = \frac{2\pi}{L} n_i \]

- lowest non-zero momentum is quite large, big gaps

- non-periodic or twisted spatial boundary conditions: allow continuously variable offset in the comb of allowed three-momenta
Twisted BC in QCD

\[\mathcal{L}_q = \bar{q}(x)(\bar{\Psi} + M)q(x) \]

- observables should be single-valued: OK if action is single-valued on a torus

⇒ field satisfies

\[\psi(x + e_iL) = U_i\psi(x) \]

for \(i = 1, 2, 3 \), where \(U_i \) is a symmetry of the action

- for general diagonal \(M \), \(U_i \) should be diagonal (CSA of \(U(3) \))

\[U_i = \exp(i\Theta_i) \]

- allowed momenta:

\[p_i = \frac{2\pi n_i}{L} + \frac{\theta_i}{L} \]
Twisted BC: 2

- change variable:

\[\tilde{q}(x) = e^{-i\Theta \cdot x} q(x) \quad (\Theta_0 = 0) \]

- \(\tilde{q} \) satisfies PBC

- Lagrangian:

\[\mathcal{L}_q = \tilde{q}(x)(\bar{\mathcal{D}} + M)\tilde{q}(x) \]

with

\[\tilde{D}_\mu = D_\mu + iB_\mu, \quad B_i = \Theta_i/L, \quad B_0 = 0 \]
propagator encodes shift: $S(x, y) \rightarrow \tilde{S}(x, y)$

$$\tilde{S}(x) = \langle \tilde{q}(x)\tilde{q}(0) \rangle = \int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_k \frac{e^{ik \cdot x}}{i(k + \beta) + M}$$

- sum over $k = 2\pi n / L$
- momentum in denominator is shifted by θ / L
Twisted BC on the Lattice

A change of variable modifies the lattice covariant derivatives:

\[\nabla^{\Theta}_\mu \psi(x) = e^{i\Theta_\mu/L} U_\mu(x) \psi(x + \hat{\mu}) - \psi(x) \]

\[\nabla^{\Theta*}_\mu \psi(x) = \psi(x) - e^{-i\Theta_\mu/L} U^*_\mu(x - \hat{\mu}) \psi(x - \hat{\mu}) \]
Twisted BC on the Lattice

- change of variable modifies the lattice covariant derivatives:

\[\nabla_\mu^{\Theta} \psi(x) = e^{i\Theta_\mu/L} U_\mu(x) \psi(x + \hat{\mu}) - \psi(x) \]

\[\nabla_\mu^{\Theta*} \psi(x) = \psi(x) - e^{-i\Theta_\mu/L} U_\mu^*(x - \hat{\mu}) \psi(x - \hat{\mu}) \]

- inverting the modified operator encodes the momentum shift \(\Theta/L \) in the calculated propagator
Twisted BC on the Lattice

- change of variable modifies the lattice covariant derivatives:

\[\nabla^\Theta_\mu \psi(x) = e^{i\Theta_\mu/L} U_\mu(x) \psi(x + \hat{\mu}) - \psi(x) \]

\[\nabla^{\Theta*}_\mu \psi(x) = \psi(x) - e^{-i\Theta_\mu/L} U^\dagger_\mu(x - \hat{\mu}) \psi(x - \hat{\mu}) \]

- inverting the modified operator encodes the momentum shift \(\Theta/L \) in the calculated propagator

- hadron momentum shifted by sum of quark shifts
 - dDPT: quenched study of pseudoscalar meson dispersion relation
 - SV: ChPT analysis
Exponential suppression of finite-volume corrections from θ-BC for quantities without FSI (masses, decay constants, semileptonic FF’s)
Exponential suppression of finite-volume corrections from θ-BC for quantities without FSI (masses, decay constants, semileptonic FF’s)

Not possible in general to extract matrix elements using θ-BC for amplitudes involving FSI (eg $K \rightarrow \pi\pi$)
SV Chiral PT Analysis

- Exponential suppression of finite-volume corrections from θ-BC for quantities without FSI (masses, decay constants, semileptonic FF’s)

- Not possible in general to extract matrix elements using θ-BC for amplitudes involving FSI (e.g., $K \rightarrow \pi\pi$)

- The above remain true for ‘partial twisting’: θ-BC for valence, PBC for sea
Exponential suppression of finite-volume corrections from θ-BC for quantities without FSI (masses, decay constants, semileptonic FF’s)

Not possible in general to extract matrix elements using θ-BC for amplitudes involving FSI (eg $K \rightarrow \pi\pi$)

The above remain true for ‘partial twisting’: θ-BC for valence, PBC for sea

They construct effective Lagrangian in presence of θ-BC.
Twisted BC:
\[\Sigma(x + e_i L) = U_i \Sigma(x) U_i^\dagger \]

Redefine fields:
\[\tilde{\Sigma}(x) = e^{-i\Theta \cdot x/L} \Sigma(x) e^{i\Theta \cdot x/L} \]
Twisted ChPT

Twisted BC:

\[\Sigma(x + e_i L) = U_i \Sigma(x) U_i^\dagger \]

Redefine fields:

\[\tilde{\Sigma}(x) = e^{-i\Theta \cdot x / L} \Sigma(x) e^{i\Theta \cdot x / L} \]

to get

\[\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \langle \tilde{D}_\mu \tilde{\Sigma}^\dagger \tilde{D}_\mu \tilde{\Sigma} \rangle - \frac{f^2}{8} \langle \tilde{\Sigma} \chi^\dagger + \chi \tilde{\Sigma}^\dagger \rangle \]

where

\[\tilde{D}_\mu \tilde{\Sigma} = \partial_\mu + i [B_\mu, \tilde{\Sigma}] \]
Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_μ.
Effect of twist on mesons found from $[B_i, \tilde{\Sigma}]$:
Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_μ. Effect of twist on mesons found from $[B_i, \tilde{\Sigma}]$:

- neutral mesons:

 $$ [B_i, \pi^0] = 0 \quad \rightarrow \text{no shift} $$
Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_μ.

Effect of twist on mesons found from $[B_i, \tilde{\Sigma}]$:

- neutral mesons:

 $[B_i, \pi^0] = 0 \quad \rightarrow \text{no shift}$

- charged mesons shifted by difference of the twists of the two valence quarks

 $[B_i, \pi^\pm] = \pm \frac{(\theta_{ui} - \theta_{di})}{L} \pi^\pm$
Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_μ.

Effect of twist on mesons found from $[B_i, \tilde{\Sigma}]$:

- neutral mesons:
 $$[B_i, \pi^0] = 0 \quad \rightarrow \text{no shift}$$

- charged mesons shifted by difference of the twists of the two valence quarks
 $$[B_i, \pi^\pm] = \pm \frac{(\theta_{ui} - \theta_{di})}{L} \pi^\pm$$

- allowed values of meson momenta shifted in external states and in propagators
• fixed volume L^3T with $L = 3.2r_0 \approx 1.6$ fm

 $16^3 \times 32$
 $24^3 \times 48$
 $32^3 \times 64$

• $O(a)$ improved

• 4 quark masses

• invert for each of

 $|\theta| = 0, \sqrt{3}, 2\sqrt{3}, 3\sqrt{3}$

• calculate pseudoscalar meson correlator with one quark twisted

• Expected meson momentum

\[|p| = \frac{|\theta|}{L} = \begin{cases} 0.000 \text{ GeV} \\ 0.217 \text{ GeV} \\ 0.433 \text{ GeV} \\ 0.650 \text{ GeV} \end{cases} \]

\[\text{cf. } 2\pi/L \approx 0.785 \text{ GeV} \]
• extract effective energies
• interpolate to fixed physical quark masses
• extrapolate $a \to 0$ at fixed quark mass, fixed L
extract effective energies
interpolate to fixed physical quark masses
extrapolate $a \rightarrow 0$ at fixed quark mass, fixed L

relativistic dispersion relation

$$E_{ij}^2 = M_{ij}^2 + |\theta|^2 / L^2$$

is well satisfied
Dispersion relation test

$$(r_0 E)^2$$

$$(r_0 |\theta|/L)^2$$

Tsukuba LQCD&PP 15 Dec 2004
Partial Twisting

- ChPT analysis above was in full QCD
- Do you have to twist the sea quarks by the same amount as the valence quarks?
Partial Twisting

- ChPT analysis above was in full QCD
- Do you have to twist the sea quarks by the same amount as the valence quarks?
- SV say ‘Not always’
 - extend analysis to a *partially twisted* chiral Lagrangian corresponding to $N_v + N_s$ quarks with N_v ghost quarks
 - for processes with at most one hadron in external states and where shift does not introduce cuts in the correlator
Example from SV: \(f_{K^\pm} \) for untwisted \(d \) and \(s \) quarks:

\[
\frac{f_K(L) - f_K(\infty)}{f_K(\infty)} = -\frac{m_\pi^2}{f_\pi^2} \frac{e^{-m_\pi L}}{(2\pi m_\pi L)^{3/2}} \left\{ \begin{array}{l}
\frac{9}{4} \\
\frac{1}{2} \sum_i \cos \theta_i + \frac{3}{4} \\
\sum_i \cos \theta_i - \frac{3}{4}
\end{array} \right\} \]

\(u \) untwisted

\(u \) fully twisted

\(u \) partially twisted
Applications?

- Numerical tests with twisted valence quarks on untwisted sea quarks: meson dispersion relations, meson decay constants with different meson momenta
Applications?

- Numerical tests with twisted valence quarks on untwisted sea quarks: meson dispersion relations, meson decay constants with different meson momenta

- Heavy-to-light semileptonic decays (eg: $D \rightarrow \pi l\nu$)
 - at fixed quark masses: map out full q^2 range
 - chiral extrapolation: generate points at fixed $E = v \cdot p_\pi$ for different light quarks and avoid fitting to a model FF