Twisted Boundary Conditions

Jonathan Flynn

Contents

- $\theta-\mathrm{BC}:$ twisted boundary conditions
- TChPT: twisted chiral perturbation theory
- Partial twisting
- Applications?

Some recent work

$N-N$ phase shifts

Pseudoscalar meson dispersion relation (quenched)
θ-BC and two-particle states

ChPT analysis

PF Bedaque

GM de Divitiis, hep-lat/0405002 R Petronzio and N Tantalo

GM de Divitiis hep-lat/0409I54 and N Tantalo

CT Sachrajda and G Villadoro
hep-lat/04II033

Boundary Conditions

- PBC: lattice momenta quantised

$$
p_{i}=\frac{2 \pi}{L} n_{i}
$$

- lowest non-zero momentum is quite large, big gaps
- non-periodic or twisted spatial boundary conditions: allow continuously variable offset in the comb of allowed three-momenta

$$
\mathcal{L}_{q}=\bar{q}(x)(D D+M) q(x)
$$

- observables should be single-valued: OK if action is single-valued on a torus
- \Rightarrow field satisfies

$$
\psi\left(x+e_{i} L\right)=U_{i} \psi(x)
$$

for $i=1,2,3$, where U_{i} is a symmetry of the action

- for general diagonal M, U_{i} should be diagonal (CSA of $U(3)$)

$$
U_{i}=\exp \left(i \Theta_{i}\right)
$$

- allowed momenta:

$$
p_{i}=\frac{2 \pi n_{i}}{L}+\frac{\theta_{i}}{L}
$$

Twisted BC: 2

- change variable:

$$
\tilde{q}(x)=e^{-i \Theta \cdot x} q(x) \quad\left(\Theta_{0}=0\right)
$$

- \tilde{q} satisfies PBC
- Lagrangian:

$$
\mathcal{L}_{q}=\overline{\tilde{q}}(x)(\tilde{D}+M) \tilde{q}(x)
$$

with

$$
\tilde{D}_{\mu}=D_{\mu}+i B_{\mu}, \quad B_{i}=\Theta_{i} / L, \quad B_{0}=0
$$

Twisted BC: 3

- propagator encodes shift: $S(x, y) \rightarrow \tilde{S}(x, y)$

$$
\tilde{S}(x)=\langle\tilde{q}(x) \overline{\tilde{q}}(0)\rangle=\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{e^{i k \cdot x}}{i(\not k+B)+M}
$$

- sum over $\mathbf{k}=2 \pi \mathbf{n} / L$
- momentum in denominator is shifted by θ / L

Twisted BC on the Lattice

- change of variable modifies the lattice covariant derivatives:

$$
\begin{aligned}
\nabla_{\mu}^{\Theta} \psi(x) & =e^{i \Theta_{\mu} / L} U_{\mu}(x) \psi(x+\hat{\mu})-\psi(x) \\
\nabla_{\mu}^{\Theta *} \psi(x) & =\psi(x)-e^{-i \Theta_{\mu} / L} U_{\mu}^{\dagger}(x-\hat{\mu}) \psi(x-\hat{\mu})
\end{aligned}
$$

Twisted BC on the Lattice

- change of variable modifies the lattice covariant derivatives:

$$
\begin{aligned}
\nabla_{\mu}^{\Theta} \psi(x) & =e^{i \Theta_{\mu} / L} U_{\mu}(x) \psi(x+\hat{\mu})-\psi(x) \\
\nabla_{\mu}^{\Theta *} \psi(x) & =\psi(x)-e^{-i \Theta_{\mu} / L} U_{\mu}^{\dagger}(x-\hat{\mu}) \psi(x-\hat{\mu})
\end{aligned}
$$

- inverting the modified operator encodes the momentum shift Θ / L in the calculated propagator

Twisted BC on the Lattice

- change of variable modifies the lattice covariant derivatives:

$$
\begin{aligned}
\nabla_{\mu}^{\Theta} \psi(x) & =e^{i \Theta_{\mu} / L} U_{\mu}(x) \psi(x+\hat{\mu})-\psi(x) \\
\nabla_{\mu}^{\Theta *} \psi(x) & =\psi(x)-e^{-i \Theta_{\mu} / L} U_{\mu}^{\dagger}(x-\hat{\mu}) \psi(x-\hat{\mu})
\end{aligned}
$$

- inverting the modified operator encodes the momentum shift Θ / L in the calculated propagator
- hadron momentum shifted by sum of quark shifts
- dDPT: quenched study of pseudoscalar meson dispersion relation
- SV: ChPT analysis

SV Chiral PT Analysis

- Exponential suppression of finite-volume corrections from $\theta-\mathrm{BC}$ for quantities without FSI (masses, decay constants, semileptonic FF's)

SV Chiral PT Analysis

- Exponential suppression of finite-volume corrections from $\theta-\mathrm{BC}$ for quantities without FSI (masses, decay constants, semileptonic FF's)
- Not possible in general to extract matrix elements using θ-BC for amplitudes involving FSI (eg $K \rightarrow \pi \pi$)

SV Chiral PT Analysis

- Exponential suppression of finite-volume corrections from $\theta-\mathrm{BC}$ for quantities without FSI (masses, decay constants, semileptonic FF's)
- Not possible in general to extract matrix elements using θ-BC for amplitudes involving FSI (eg $K \rightarrow \pi \pi$)
- The above remain true for 'partial twisting': $\theta-\mathrm{BC}$ for valence, PBC for sea

SV Chiral PT Analysis

- Exponential suppression of finite-volume corrections from $\theta-\mathrm{BC}$ for quantities without FSI (masses, decay constants, semileptonic FF's)
- Not possible in general to extract matrix elements using θ-BC for amplitudes involving FSI (eg $K \rightarrow \pi \pi$)
- The above remain true for 'partial twisting': $\theta-\mathrm{BC}$ for valence, PBC for sea

They construct effective Lagrangian in presence of $\theta-B C$.

Twisted ChPT

Twisted BC:

$$
\Sigma\left(x+e_{i} L\right)=U_{i} \Sigma(x) U_{i}^{\dagger}
$$

Redefine fields:

$$
\tilde{\Sigma}(x)=e^{-i \Theta \cdot x / L} \Sigma(x) e^{i \Theta \cdot x / L}
$$

Twisted ChPT

Twisted BC:

$$
\Sigma\left(x+e_{i} L\right)=U_{i} \Sigma(x) U_{i}^{\dagger}
$$

Redefine fields:

$$
\tilde{\Sigma}(x)=e^{-i \Theta \cdot x / L} \Sigma(x) e^{i \Theta \cdot x / L}
$$

to get

$$
\mathcal{L}_{\mathrm{ChPT}}=\frac{f^{2}}{8}\left\langle\tilde{D}^{\mu} \tilde{\Sigma}^{\dagger} \tilde{D}_{\mu} \tilde{\Sigma}\right\rangle-\frac{f^{2}}{8}\left\langle\tilde{\Sigma} \chi^{\dagger}+\chi \tilde{\Sigma}^{\dagger}\right\rangle
$$

where

$$
\tilde{D}_{\mu} \tilde{\Sigma}=\partial_{\mu}+i\left[B_{\mu}, \tilde{\Sigma}\right]
$$

Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_{μ}. Effect of twist on mesons found from $\left[B_{i}, \tilde{\Sigma}\right]$:

Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_{μ}. Effect of twist on mesons found from $\left[B_{i}, \tilde{\Sigma}\right]$:

- neutral mesons:

$$
\left[B_{i}, \pi^{0}\right]=0 \quad \longrightarrow \text { no shift }
$$

Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_{μ}. Effect of twist on mesons found from $\left[B_{i}, \tilde{\Sigma}\right]$:

- neutral mesons:

$$
\left[B_{i}, \pi^{0}\right]=0 \quad \longrightarrow \text { no shift }
$$

- charged mesons shifted by difference of the twists of the two valence quarks

$$
\left[B_{i}, \pi^{ \pm}\right]= \pm \frac{\left(\theta_{u i}-\theta_{d i}\right)}{L} \pi^{ \pm}
$$

Twisted ChPT: 2

Standard ChPT Lagrangian coupled to vector field B_{μ}. Effect of twist on mesons found from $\left[B_{i}, \tilde{\Sigma}\right]$:

- neutral mesons:

$$
\left[B_{i}, \pi^{0}\right]=0 \quad \longrightarrow \text { no shift }
$$

- charged mesons shifted by difference of the twists of the two valence quarks

$$
\left[B_{i}, \pi^{ \pm}\right]= \pm \frac{\left(\theta_{u i}-\theta_{d i}\right)}{L} \pi^{ \pm}
$$

- allowed values of meson momenta shifted in external states and in propagators

dDPT Quenched Study

- fixed volume $L^{3} T$ with $L=3.2 r_{0} \approx 1.6 \mathrm{fm}$

$$
\begin{aligned}
& 16^{3} \times 32 \\
& 24^{3} \times 48 \\
& 32^{3} \times 64
\end{aligned}
$$

- $O(a)$ improved
- 4 quark masses
- invert for each of

$$
|\theta|=0, \sqrt{3}, 2 \sqrt{3}, 3 \sqrt{3}
$$

- calculate pseudoscalar meson correlator with one quark twisted
- Expected meson momentum

$$
|\mathbf{p}|=\frac{|\theta|}{L}=\left\{\begin{array}{l}
0.000 \mathrm{GeV} \\
0.217 \mathrm{GeV} \\
0.433 \mathrm{GeV} \\
0.650 \mathrm{GeV}
\end{array}\right.
$$

cf. $2 \pi / L \approx 0.785 \mathrm{GeV}$

dDPT: 2

- extract effective energies
- interpolate to fixed physical quark masses
- extrapolate $a \rightarrow 0$ at fixed quark mass, fixed L

dDPT: 2

- extract effective energies
- interpolate to fixed physical quark masses
- extrapolate $a \rightarrow 0$ at fixed quark mass, fixed L
- relativistic dispersion relation

$$
E_{i j}^{2}=M_{i j}^{2}+|\theta|^{2} / L^{2}
$$

is well satisfied

dDPT: 3

Dispersion relation test

Partial Twisting

- ChPT analysis above was in full QCD
- Do you have to twist the sea quarks by the same amount as the valence quarks?

Partial Twisting

- ChPT analysis above was in full QCD
- Do you have to twist the sea quarks by the same amount as the valence quarks?
- SV say 'Not always'
- extend analysis to a partially twisted chiral Lagrangian corresponding to $N_{v}+N_{s}$ quarks with N_{v} ghost quarks
- for processes with at most one hadron in external states and where shift does not introduce cuts in the correlator

Partial Twisting: 2

Example from SV : $f_{K^{ \pm}}$for untwisted d and s quarks:

$$
\frac{f_{K}(L)-f_{K}(\infty)}{f_{K}(\infty)}
$$

$=-\frac{m_{\pi}^{2}}{f_{\pi}^{2}} \frac{e^{-m_{\pi} L}}{\left(2 \pi m_{\pi} L\right)^{3 / 2}} \begin{cases}\frac{9}{4} & u \text { untwisted } \\ \left(\frac{1}{2} \sum_{i} \cos \theta_{i}+\frac{3}{4}\right) & u \text { fully twisted } \\ \left(\sum_{i} \cos \theta_{i}-\frac{3}{4}\right) & u \text { partially twisted }\end{cases}$

Applications?

- Numerical tests with twisted valence quarks on untwisted sea quarks: meson dispersion relations, meson decay constants with different meson momenta

Applications?

- Numerical tests with twisted valence quarks on untwisted sea quarks: meson dispersion relations, meson decay constants with different meson momenta
- Heavy-to-light semileptonic decays (eg: $D \rightarrow \pi l v$)
- at fixed quark masses: map out full q^{2} range
- chiral extrapolation: generate points at fixed $E=v \cdot p_{\pi}$ for different light quarks and avoid fitting to a model FF

