Heavy quark physics with NRQCD bs and light dynamical quarks Christine Davies

> University of Glasgow HPQCD and UKQCD collaborations

Key aim of HPQCD collabn: accurate calcs in lattice QCD, emphasising heavy q physics. Requires a whole range of lattice systematic errors to be simultaneously minimised - critical one has been inclusion of light dynamical quarks.

- Current results on heavyonium, α_s etc
- Developments for calculations for next 1-2 years moving NRQCD, HISQ

Japan Dec 2004

People involved in various aspects of this work:

I. Allison, S. Collins, CD, A. Dougall, K. Foley, E. Follana, E. Gamiz, A. Gray, E. Gulez, A. Hart, P. Lepage, Q. Mason, M. Nobes, J. Shigemitsu, H. Trottier, M. Wingate HPQCD/UKQCD

C. Aubin, C. Bernard, T. Burch, C. DeTar, S. Gottlieb, E. Gregory, U. Heller, J. Hetrick, J. Osborn, R. Sugar, D. Toussaint, MILC

M. Di Pierro, A. El-Khadra, A. Kronfeld, P. Mackenzie, D. Menscher,M. Okamoto, J. SimoneHPQCD/Fermilab

Heavy quark physics is an important part of the Standard Model and place where lattice QCD can make key calculations.

- Form many 'gold-plated', well-characterised heavy-heavy bound states whose masses can be calculated accurately in lattice QCD.
 New states being discovered there currently - *predictions* possible.
- Heavyonium states test the b and c quark actions for use in calculations for heavy-light mesons and baryons.
 Heavy-light bound states are critical to understanding CKM unitarity triangle.

Problem on lattice is $m_Q a$ not small \rightarrow special techniques needed.

The Unitarity triangle

Important objective of current particle physics: accurate determination of elements of CKM matrix.

B factory prog. needs small 2-3% *reliable* lattice QCD errors for $B_{s/d}$ oscillations, $B \rightarrow D$ or π decay. CLEO-c will test lattice predictions for D physics in next 2 years. Requires all systematic errors to be small simultaneously. Precise quenched calcs are no good!

HPQCD/MILC spectrum results 2003

MILC collab. have used improved staggered quark formalism (+ highly improved gluon action) to generate ensembles of configurations which include 2+1 flavours of dynamical quarks.

2 = u, d degenerate with masses down to $m_s/8$. 1 = s (can ignore heavy c, b, t dynamical qs.) 3 values of lattice spacing, $a \approx 0.087$ fm and 0.12fm and 0.18fm. Fix 5 free parameters of QCD (bare $m_u = m_d, m_s, m_c, m_b$, and $a \equiv \alpha_s$) using $m_{\pi}, m_K, m_{D_s}, m_{\Upsilon}$ and $\Delta E_{\Upsilon}(2S - 1S)$. These are 'gold-plated' quantities (e.g. stable hadron masses).

Compute other 'gold-plated' quantities as a test of (lattice) QCD.

Lattice QCD/Experiment (no free parameters!):

Davies et al, hep-lat/0304004 + Toussaint, Davies, LAT04

Tests: light mesons and baryons heavy-light mesons heavyonium Find agreement with expt (at last!) when correct dyn. quark content is present. Quenched approx. has syst. errors 10% and internal inconsistency.

These results needed:

- Large ensembles to get good statistical errors. Long length in the time direction gives good π mass.
- Large physical volume.
- Very light u and d quark masses so chiral extrapolation is not far.
- Good control of discretisation errors with a highly improved gluon and quark action.

In fact discretisation errors are largest source of remaining uncertainty. Disc. errors are worse unquenched than they were quenched. (a few % vs zero)

Is this from glue or from a^2 errors in dynamical quarks (handled by staggered chiral pert. th.)?

8

Future calculations will improve further on this in two ways:

- Run at even finer lattice spacing values a = 0.06 fm with $m_l/m_s = 0.2$ costs 3 Tflopyrs. ($48^3 \times 144$). This halves all discretisation errors compared to MILC fine lattice set. May be done by UKQCD+MILC.
- Run with more highly improved gluon and quark action. Gluon $N_f \alpha_s a^2$ corrections being calculated (Mason and Horgan). Highly Improved Staggered Quarks have half the taste-changing errors of asqtad, (Follana).

NonRelativistic QCD (NRQCD)

Discretisation errors are naively a worse problem for heavy quarks because $m_Q a$ is large. However, their non-relativistic nature saves us. NRQCD good for heavy quarks - can match order by order in v_Q and α_s to continuum full QCD.

L is $\psi^{\dagger}(D_t + H)\psi$, where ψ is a 2-spinor.

$$H_{0} = -\frac{\Delta^{(2)}}{2M}$$

$$\delta H = -c_{4}\frac{g}{2M}\vec{\sigma} \cdot \vec{B} + c_{2}\frac{ig}{8M^{2}}(\nabla \cdot \vec{E} - \vec{E} \cdot \nabla)$$

$$- c_{3}\frac{g}{8M^{2}}\vec{\sigma} \cdot (\nabla \times \vec{E} - \vec{E} \times \nabla)$$

$$- c_{1}\frac{(\Delta^{(2)})^{2}}{8M^{3}}(1 + \frac{Ma}{2n}) + c_{5}\frac{a^{2}\Delta^{(4)}}{24M} + \dots$$

Fast to solve on one pass thru lattice. All Us tadpole-improved. For b quarks this is an excellent action. For c quarks more problematic.

$\Upsilon(b\overline{b})$ spectrum

Lattice NRQCD for bs on MILC configs. Tests/tunes action for Bs. 2S-1S fixes a and 1S fixes am_b .

1-loop matching gives $m_{b,\overline{MS}}(m_{b,\overline{MS}})=4.3(3)$ GeV.

Gray, Davies et al, HPQCD, hep-lat/0310041, Gulez, Shigemitsu, hep-lat0312017.

Prediction of B_c mass.

From difference between mass of B_c (NRQCD b, Fermilab c) and average of Υ and J/ψ , get 6.304±12+18-0 GeV.

New experimental result from CDF (Glasgow, FNAL and Texas Tech) 6287(5) MeV.

Allison, Davies, Gray, Kronfeld, Mackenzie, Simone (HPQCD), LAT04

Precise determination of α_s .

Mean value of various Wilson loops and their ratios calculated to 3rd order in lattice pert. th. and on the lattice.

Results available at

mated.

Lattice Results Compared With PDG-04

Matrix elements in heavyonium

Accurate calculation of Υ leptonic width is good check.

Renormln calc. by Horgan in progress. Meanwhile take ratio of 2S to 1S to cancel leading piece.

Clear that discretisation errors are main problem here - improve operators, action etc.

14

Gold-plated quantities for the CKM matrix

Gold-plated decays (i.e at most one hadron in final state) exist for almost every element $(+ K - \overline{K} \text{ mixing})$. Can now calculate these accurately in lattice QCD. Important for lattice calcs to have extensive cross-checks for error calibration: Υ , B, ψ , D, etc.

$\mathbf{V_{ud}}$	$\mathbf{V_{us}}$	$\mathbf{V_{ub}}$
$\pi ightarrow l u$	$K \rightarrow l \nu$	$B \to \pi l \nu$
	$K \to \pi l \nu$	
$\mathbf{V_{cd}}$	$\mathbf{V_{cs}}$	$\mathbf{V_{cb}}$
$D \rightarrow l \nu$	$D_s \rightarrow l\nu$	$B \rightarrow D l \nu$
$D \to \pi l \nu$	$D \to K l \nu$	
$\mathbf{V_{td}}$	$\mathbf{V_{ts}}$	$\mathbf{V_{tb}}$
$\langle B_d \overline{B}_d \rangle$	$\langle B_s \overline{B}_s \rangle$	

Unquenched results for $B \rightarrow \pi$ form factors

Extrapoln to physical m_{π} is done at fixed E_{π} and is not far (lightest $m_{\pi} = 260 \text{ MeV}$).

Shigemitsu+Gulez, HPQCD, LAT04

Used by Belle in new V_{ub} determn. (hep-ex/0408145) These results are great but still suffer from one problem - they are unable to cover the full q^2 range.

 $B \rightarrow \pi$ at small q^2 corresponds to π at large lattice momentum. This gives:

- increased statistical errors since signal/noise set by splitting to zero momentum π .
- increased systematic errors from discretisation errors at large $p_{\pi}a$.

Can solve these problems by moving B instead provided that we do not increase systematic errors in B system.

In fact we can treat large B momentum accurately since it is mostly b momentum and b momentum we can treat exactly with moving NRQCD.

Moving NRQCD

Write $P_b = m_b u + k$. $u = \gamma(1, \vec{v})$.

Now remove $m_b u$ from the action in the same way that m_b was removed for NRQCD.

For NRQCD, do FWT in rest frame of $b \equiv$ lattice frame.

For moving NRQCD rest frame of b boosted wrt lattice, and must boost back to get L in lattice frame.

Early work by Hashimoto and Sloan. We have extended action, tested heavy-heavy and heavy-light and done $\mathcal{O}(\alpha_s)$ pert. th.

Foley, Lepage, Davies, Dougall, HPQCD, LAT04

Moving NRQCD

In b rest frame:

$$L = \psi^{\dagger} (iD_t + \frac{D^2}{2m} + \frac{\sigma \cdot B}{2m} + \ldots)\psi$$
$$\Psi = Te^{-im\gamma_0 t} \begin{pmatrix} \psi \\ \chi \end{pmatrix}$$

In lattice frame:

$$L = \psi^{\dagger} (iD_{t} + i\mathbf{v} \cdot \mathbf{D} + \frac{\mathbf{D}^{2}}{2\gamma m} + -\frac{(\mathbf{v} \cdot \mathbf{D})^{2}}{2\gamma m} + \frac{\sigma \cdot \tilde{B}}{2\gamma m} \dots)\psi$$

$$\Psi = \frac{\Lambda(\mathbf{v})}{\sqrt{\gamma}} T e^{-imu \cdot x} A_{D_{t}} \begin{pmatrix} \psi_{v} \\ \chi_{v} \end{pmatrix}; \ \Lambda = \frac{1}{\sqrt{2(1+\gamma)}} \begin{pmatrix} 1+\gamma & \sigma \cdot \mathbf{v} \\ \sigma \cdot \mathbf{v} & 1+\gamma \end{pmatrix}$$

Use simplest action (with no spin-dependence).

Take quenched lattices at β =5.7 as cheap.

Do HH and HL. For L use clover propagators at κ_s .

Antiquark G is G_q^* with $v \to -v$

Check v dependence of e.g. kinetic mass for fixed ma. Extract this from:

$$E_v(k) + C(v) = \sqrt{(Z_p \mathbf{P_0} + \mathbf{k})^2 + M_{kin}^2}$$

 $\mathbf{P_0} = \gamma m \mathbf{v}$ (twice this for HH).

Working with different k dirns wrt to P_0 can extract Z_p and M_{kin} . Noise grows as v and k grow as again set by zero total momentum states. Ameliorate with smearing.

Find HH M_{kin} not strongly v-dependent for fixed ma i.e. will not need to change ma rapidly as a function of v to tune. Find shift between χ and $E_v(k=0)$ (per quark) is same for HL and HH.

21

Can calculate heavy quark self-energy perturbatively as done in NRQCD.

Working to $\mathcal{O}(\alpha_s)$:

$$\mathcal{G}^{-1} = Q^{-1} - a\Sigma(k)$$

= $-ik_4a - \alpha_s\Omega_0 + \alpha_sik_4a\Omega_1 + \mathbf{v} \cdot \mathbf{k}a - \alpha_s\mathbf{v} \cdot \mathbf{k}\Omega_v + \dots$
= $Z_{\psi}(-i\overline{k}_4a + \frac{\mathbf{k}^2a^2}{2\gamma_R m_R a} + \frac{\mathbf{P}_{\mathbf{R}} \cdot \mathbf{k}}{\gamma_R m_R a} + \dots)$

with $\Omega_v = \frac{1}{v_x} \frac{\partial \Sigma}{\partial k_x}$ etc. Remnant of reparameterisation invariance keeps renormln of P_0 small. Physics is same if shift momentum between k and P_0 .

Test pert.th. against non-perturbative extraction of e.g. $Z_p =$ renormln of P_0 .

Also calculate HL binding energy as $\gamma_R(E_v(k=0) - E_0)$ and find *v*-independent.

23

Tests of moving NRQCD - HH

Compare "decay constant" of η_b at rest and moving and from spatial and temporal axial vector current.

 $J_0 = \chi_{\overline{v}}^{\dagger} \psi_v$ and $J_k = \chi_{\overline{v}}^{\dagger} v_k \psi_v$. Relativistic corrns will fix A_k case to 1.

Tests of moving NRQCD - HL

Ditto for HL. Now have two pieces to currents at leading order coming from boost operator Λ .

e.g. $J_k \propto (1+\gamma)\chi_{\overline{v}}^{\dagger}\sigma_k q_{34} + \gamma\chi_{\overline{v}}^{\dagger}\sigma_k \sigma \cdot \mathbf{v}q_{12}$.

Now makes a big difference to getting f_B right from spatial axial current.

For non-moving case, subleading current is same size as leading current because $A_k \propto k$. RenormIn Z_v not yet calculated.

Moving NRQCD - future

- Need to start calculations on real MILC configs with staggered light quarks for appropriate 3-pt functions for $B \to \pi$.
- Need to calculate renormalisation of current operators, preferably to 2-loops.

Further improving the staggered formalism

Limit to precision with asqtad improved staggered quarks is still taste-changing interactions associated with high-momentum gluon exchange.

p=-π/a

Improve action further by repeating the 'Fat7' smearing. Add Naik and Lepage terms (x2) as before to keep an action with $\alpha_s a^2$ errors *only*. This is the Highly Improved Staggered Quark action (HISQ).

Discretisation errors

HISQ shows v. good behaviour on taste-changing and dispersion reln.

Follana, Mason, Davies, HPQCD, in preparation

Future: Use HISQ for charm

Allison, Davies, Follana, Lepage, Mason HPQCD

Unimproved calcs (JLQCD heplat/9411012) had problems with tastechanging in $\pi \equiv \eta_c$. This is much improved for HISQ. Plan: try this on MILC fine (and planned superfine) lattices where $\alpha_s(m_c a)^2$ = a few %.

Future First QCDOC machine being tested in Edinburgh.

Conclusions

- Calculations with 2+1 flavors of light dynamical quarks have made first high precision lattice *prediction* of a hadron mass, that of the mass of B_c meson.
- Gold-plated matrix elements for CKM determinations are in progress (more in Andreas and Junko's talks).
- Future work based on some new techniques which have lots of promise.