Spontaneous CP violation and quark mass ambiguities

Michael Creutz

Brookhaven National Laboratory

Two entwined topics

- For what quark masses is CP spontaneously broken?
- $m_{u}=0$ is not a physically meaningful concept.
M.C., PRL 92:201601 (2004) and PRL 92:162003 (2004)

Assumptions

- QCD exists and confines
- Effective chiral Lagrangians are qualitatively correct

Based on old ideas

- Dashen (1971)
- Georgi and McArthur (1981); Kaplan and Manohar (1986)
- Banks, Nir and Seiberg (1994)
- MC (1995)

Assumptions

- QCD exists and confines
- Effective chiral Lagrangians are qualitatively correct

Based on old ideas

- Dashen (1971)
- Georgi and McArthur (1981); Kaplan and Manohar (1986)
- Banks, Nir and Seiberg (1994)
- MC (1995)

Controversial

- first version (hep-th/0303254) rejected by Phys. Rev.
- "I think it is wrong. Like the previous referee, I am somewhat concerned that the errors are so obvious."

The effective meson theory $\quad \Sigma=\exp \left(i \pi_{\alpha} \lambda_{\alpha} / f_{\pi}\right) \in \operatorname{SU}(3)$

- three flavors: up, down, strange
- λ_{α} : generators of $\operatorname{SU}(3)$
- π_{α} : pseudoscalar octet fields

Chiral symmetry $\quad \Sigma \rightarrow g_{L}^{\dagger} \Sigma g_{R}$

- explicitly broken by quark masses

$$
\begin{gathered}
L=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma\right)-v \operatorname{Re} \operatorname{Tr}(\Sigma M) \\
M=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right)
\end{gathered}
$$

Expand to quadratic order in meson fields

- diagonalize to find meson masses

$$
m_{\pi^{ \pm}}^{2} \sim m_{u}+m_{d}
$$

Isospin violating $m_{d}-m_{u}$ mixes π^{0} and η

$$
\begin{aligned}
& m_{\pi^{0}}^{2} \sim \\
& \frac{2}{3}\left(m_{u}+m_{d}+m_{s}-\sqrt{m_{u}^{2}+m_{d}^{2}+m_{s}^{2}-m_{u} m_{d}-m_{u} m_{s}-m_{d} m_{s}}\right) \\
& m_{\eta}^{2} \sim \\
& \frac{2}{3}\left(m_{u}+m_{d}+m_{s}+\sqrt{m_{u}^{2}+m_{d}^{2}+m_{s}^{2}-m_{u} m_{d}-m_{u} m_{s}-m_{d} m_{s}}\right)
\end{aligned}
$$

$m_{\pi_{0}}^{2}$ can vanish

- requires a negative quark mass $m_{u}=\frac{-m_{s} m_{d}}{m_{s}+m_{d}}$

Negative quark masses do unusual things

- anomaly makes sign of mass significant

Usual case:

- vacuum at maximum of $\operatorname{Re} \operatorname{Tr} \Sigma$
- occurs at $\Sigma=I$

Negative degenerate masses:

- vacuum at minimum of $\operatorname{Re} \operatorname{Tr} \Sigma$
- $-I$ NOT in $S U(3)$

- spontaneously broken

With negative quark masses $m_{\pi^{0}}^{2}$ can go negative

$$
\frac{2}{3}\left(m_{u}+m_{d}+m_{s}-\sqrt{m_{u}^{2}+m_{d}^{2}+m_{s}^{2}-m_{u} m_{d}-m_{u} m_{s}-m_{d} m_{s}}\right)
$$

Vanishes at

$$
m_{u}=\frac{-m_{s} m_{d}}{m_{s}+m_{d}}
$$

- boundary for pion condensed phase $\left\langle\pi^{0}\right\rangle \neq 0$

Similar boundaries at appropriate branches of

$$
m_{u}=\frac{-m_{s} m_{d}}{ \pm m_{s} \pm m_{d}}
$$

New vacuum state

$$
\Sigma=\left(\begin{array}{ccc}
e^{i \phi_{1}} & 0 & 0 \\
0 & e^{i \phi_{2}} & 0 \\
0 & 0 & e^{-i \phi_{1}-i \phi_{2}}
\end{array}\right)
$$

$$
m_{u} \sin \left(\phi_{1}\right)=m_{d} \sin \left(\phi_{2}\right)=-m_{s} \sin \left(\phi_{1}+\phi_{2}\right)
$$

- second order transition at $m_{\pi^{0}}=0$
- two degenerate vacua related by $\phi_{i} \leftrightarrow-\phi_{i}$
- CP violation appears in three-pseudoscalar couplings
(m_{u}, m_{d}) plane at fixed m_{s} :

Boundaries at

$$
m_{u}=\frac{-m_{s} m_{d}}{ \pm m_{s} \pm m_{d}}
$$

Vafa and Witten: No spontaneous \mathbb{P} in the strong interactions?

- assumes fermion determinant positive
- not true for negative quark masses

Non perturbative

- sign of quark masses significant
- negative $|M|$ corresponds to $\theta=\pi$

Hold heavier quark masses m_{s} and m_{d} fixed

- look at complex m_{u} plane

Nothing significant occurs at $m_{u}=0$ when $m_{d} \neq 0$

- First order transition along negative $\operatorname{Re} m$ axis
- second order critical point at non-zero $\operatorname{Re} m<0$
- spontaneous breaking of CP, order parameter: $\left\langle\pi_{0}\right\rangle$
- Di Vecchia and Veneziano (1980)

Does $m_{u}=0$ have any physical significance?

- not a well posed question if $m_{d} \neq 0, m_{s} \neq 0$
- unacceptable solution to the strong CP problem

Concept of an "underlying basic Lagrangian" does not exist

- must regulate divergences
- only underlying symmetries significant
- a single massless quark gives no special symmetry
- anomaly: no exact Goldstone bosons at $m_{u}=0$

Continuum theory defined as a limit

- bare parameters: coupling g and quark masses m_{i}
- renormalize to zero in continuum limit

Renormalization group equations

- $a=1 / \Gamma$ cutoff \leftrightarrow physical scale $1 / \mu$

$$
\begin{aligned}
& a \frac{d}{d a} g=\beta(g)=\beta_{0} g^{3}+\beta_{1} g^{5}+\ldots+\text { non-perturbative } \\
& a \frac{d}{d a} m=m \gamma(g)=m\left(\gamma_{0} g^{2}+\gamma_{1} g^{4}+\ldots\right)+\text { non-perturbative }
\end{aligned}
$$

$\beta_{0}, \beta_{1}, \gamma_{0}$ scheme independent

$$
\begin{array}{lll}
\beta_{0}=\frac{11-2 n_{f} / 3}{(4 \pi)^{2}} & =.0654365977 & \left(n_{f}=1\right) \\
\beta_{1}=\frac{12-12 n_{f}}{(4 \pi)^{4}} & =.0036091343 & \left(n_{f}=1\right) \\
\gamma_{0}=\frac{88}{(4 \pi)^{2}} & =.0506605918 &
\end{array}
$$

"Non-perturbative" parts

- fall faster than any power of g as $g \rightarrow 0$
- not proportional to quark mass

Solution

$$
\begin{aligned}
& a=\frac{1}{\Lambda} e^{-1 / 2 \beta_{0} g^{2}} g^{-\beta_{1} / \beta_{0}^{2}}\left(1+O\left(g^{2}\right)\right) \\
& m=M g^{\gamma_{0} / \beta_{0}}\left(1+O\left(g^{2}\right)\right)
\end{aligned}
$$

Continuum limit $a \rightarrow 0$

$$
\begin{aligned}
& g^{2} \sim \frac{1}{\log (1 / \Lambda a)} \rightarrow 0 \quad \text { "asymptotic freedom" } \\
& m \sim M\left(\frac{1}{\log (1 / \Lambda a)}\right)^{\gamma_{0} / \beta_{0}} \rightarrow 0
\end{aligned}
$$

Physical quantities fixed along renormalization group trajectory

- m_{p}, m_{π}
Λ, M : "integration constants"
- Λ : "QCD scale"
- M : "renormalized quark mass"

$$
\begin{gathered}
\Lambda=\lim _{a \rightarrow 0} \frac{e^{-1 / 2 \beta_{0} g^{2}} g^{-\beta_{1} / \beta_{0}^{2}}}{a} \\
M=\lim _{a \rightarrow 0} m g^{-\gamma_{0} / \beta_{0}}
\end{gathered}
$$

Numerical values of Λ, M depend on scheme

Defining $\beta(g), \gamma(g)$

- fix physical quantities
- adjust bare parameters as the cutoff is removed
- use particle masses $m_{i}(g, m, a)$ as physical

$$
a \frac{d m_{i}(g, m, a)}{d a}=0=\frac{\partial m_{i}}{\partial g} \beta(g)+\frac{\partial m_{i}}{\partial m} m \gamma(g)+a \frac{\partial m_{i}}{\partial a}
$$

Work with degenerate quarks for simplicity

- Two bare parameters $(g, m) \Rightarrow$ fix two masses
- m_{p} : lightest baryon
- m_{π} : lightest boson

$$
\begin{aligned}
& \beta(g)=\frac{a \frac{\partial m_{\pi}}{\partial a} \frac{\partial m_{p}}{\partial m^{\prime}}-a \frac{\partial m_{p}}{\partial a} \frac{\partial m_{\pi}}{\partial m^{\prime}}}{\frac{\partial m_{p}}{\partial g} \frac{\partial m_{\pi}}{\partial m}-\frac{\partial m_{\pi}}{\partial g} \frac{\partial m_{p}}{\partial m}} \\
& \gamma(g)=\frac{a \frac{\partial m_{\pi}}{\partial a} \frac{\partial m_{p}}{\partial g}-a \frac{\partial m_{p}}{\partial a} \frac{\partial m_{\pi}}{\partial g}}{\frac{\partial m_{p}}{\partial m} \frac{\partial m_{\pi}}{\partial g}-\frac{\partial m_{\pi}}{\partial m} \frac{\partial m_{p}}{\partial g}}
\end{aligned}
$$

- includes all perturbative and non-perturbative effects

Physical masses map onto the integration constants

- $\Lambda=\Lambda\left(m_{p}, m_{\pi}\right) \quad M=M\left(m_{p}, m_{\pi}\right)$
- inverting $\longrightarrow m_{i}=m_{i}(\Lambda, M)$
- dimensional analysis: $m_{i}=\Lambda f_{i}(M / \Lambda)$

Multi-flavor theory

- expect Goldstone bosons
- $m_{\pi}^{2} \sim m_{q}$
- square root singularity $f_{\pi}(x) \sim x^{1 / 2}$
- removes any additive ambiguity in defining M

The one flavor theory $\quad m_{\pi}=\Lambda f_{\pi}(M / \Lambda)$

- no chiral symmetry
- no Goldstone bosons
- $m_{\pi}=0$ occurs at negative quark mass
- $f_{\pi}(x)$ smooth, non-vanishing at $x=0$

Non-perturbative contributions to mass flow

- not proportional to quark mass
- "instantons" flip all quark spins
- $\Delta m_{u} \sim \frac{m_{d} m_{s}}{\Lambda_{\mathrm{qcd}}}, \Lambda_{\mathrm{qcd}}$

$$
m_{u}=0 \text { is NOT renormalization group invariant }
$$

Matching between schemes

Preserve lowest order perturbative limit as $g \rightarrow 0$ at fixed scale a

$$
\begin{aligned}
& \tilde{g}=g+O\left(g^{3}\right)+\text { non-perturbative } \\
& \tilde{m}=m\left(1+O\left(g^{2}\right)\right)+\text { non-perturbative }
\end{aligned}
$$

- "non-perturbative" vanishes faster than any power of g
- Integration constants Λ, M depend on scheme chosen

Fixed a not the continuum limit

- $g \rightarrow 0$ at fixed a :
- $a \rightarrow 0$ at fixed g :
- $a, g \rightarrow 0$ on RG trajectory:
perturbation theory on free quarks
diverges
confinement

Example new scheme:

- $\tilde{a}=a$
- $\tilde{g}=g$
- $\tilde{m}=m-M g^{\gamma_{0} / \beta_{0}} \times \frac{e^{-1 / 2 \beta_{0} g^{2} g^{-\beta_{1} / \beta_{0}^{2}}}}{\Lambda a}$

Non-perturbative redefinition of parameters makes

$$
\tilde{M} \equiv \lim _{a \rightarrow 0} \tilde{m} \tilde{g}^{-\gamma_{0} / \beta_{0}}=M-M=0
$$

A scheme always exists where the renormalized quark mass vanishes!

$M=0$ is not a physical concept!

Degenerate quarks:

- define massless by the location of the square root singularity

On the lattice

Renormalization flows depend on details of lattice action

- Wilson -- Staggered -- Domain wall -- Overlap

Overlap not unique

- depends on Dirac operator being projected
- starting with Wilson: input negative mass is adjustable

The one flavor theory dynamically generates a gap

- appears in the spectrum of the Dirac operator
- size of gap not protected by the overlap projection

Can $M=0$ be preserved between schemes?

- not guaranteed by the Ginsparg-Wilson condition

Non-vanishing θ

Three bare parameters

- $g \quad \operatorname{Re} m_{u} \quad \operatorname{Im} m_{u}$
- Explicit CP violation if $\operatorname{Im} m_{u} \neq 0$

Need to fix three physical parameters

- m_{p}, m_{π}
- neutron electric dipole moment

Three integration constants

- $\Lambda=\lim _{a \rightarrow 0} \frac{e^{-1 / 2 \beta_{0} g^{2}} g^{-\beta_{1} / \beta_{0}^{2}}}{a}$
- $\operatorname{Re} M=\lim _{a \rightarrow 0} g^{\gamma_{0} / \beta_{0}} \operatorname{Re} m$
- $\operatorname{Im} M=\lim _{a \rightarrow 0} g^{\gamma_{0} / \beta_{0}} \operatorname{Im} m$

Conventional variables

Additive shift in M makes these coordinates singular

- θ undefined if $|M|=0$
- precise value of θ scheme dependent

Topological Susceptibility

With a GW action:

- massless quark synonymous with zero topological susceptibility

Is topological susceptibility uniquely defined for $N_{f}<2$?

- Luscher: no perturbative infinities

Admissibility condition

- forbid plaquettes further than a finite distance δ from the origin
- removes "rough" gauge fields
- gives a unique winding number

Theorem:
MC, hep-lat/0409017

- admissibility incompatible with reflection positivity
- proof an extension of Grosse and Kuhnelt, 1982

CONCLUSIONS

Strong interactions can spontaneously violate CP

- large regions of parameter space
- negative quark masses
$m_{u}=0$ is not a meaningful concept
- not a solution to the strong CP problem
- non-perturbative
- topological susceptibility not uniquely defined for $N_{f}<2$

Available simulation algorithms cannot explore this physics

- sign problem
- the "square root trick" fails

Closing thought problem

$\theta=\arg (\operatorname{det}(M))$

- phase can be shuffled between different quarks
- put all phases into the top-quark mass

How can a complex top-quark mass affect low energy physics?

