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Preface

• Work in progress (Shoji’s directive)

• In light of Sinya’s talk on Tuesday, calculation of neutron

electric dipole moment (dN) is incomplete

• Calculation has (at least) two parts:

1. Naive calculation (this talk)

2. Subtraction of mixing term (Sinya’s talk)
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Introduction

T- and P-odd term allowed in QCD Lagrangian:

SQCD,θ = iθ
∫

d4x
g2

32π2
tr
[
G(x)G̃(x)

]
= iθQ,

(G(x)G̃(x) ∼ E ·B)

where Q is the topological charge of the QCD vacuum.

θ-term is CP-odd → neutron electric dipole moment, dN .

Weak interactions: Also violate CP: CKM mechanism: dN ≤
10−30 e-cm (vanishes at one-loop), many orders of magnitude

below the experimental bound [1], |~dN | < 6.3× 10−26 e-cm.
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Experimental bound + model calculations imply θ ≤ 10−10,

which is unnaturally small. However, no known symmetry to

say it vanishes. This is often called the Strong CP problem.

To translate the above experimental bound to a constraint on the

fundamental θ parameter requires evaluation of nucleon matrix

elements.

Lattice method is first-principles technique for calculation.
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Previous calculations of dN

1. V. Baluni [2] computed dN in the framework of the MIT bag

model obtaining dN ' 8.2 · 10−16 e θ-cm

2. Crewther et al. [3], using an effective chiral lagrangian found

dN ∝ θ M2
π ln(M2

π) ' 5.2 · 10−16 e θ-cm

3. Pospelov and Ritz [4], using QCD sum rules techniques,

found dN = 1.2× 10−16 e θ-cm (40-50% error estimate)

4. Aoki and Gocksch [5] were the first to pioneer lattice QCD

calculations of dN (quenched approximation).
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5. Faccioli, Guadagnoli, and Simula [12] recently found

dN = (6÷ 14)× 10−16 e θ-cm in the instanton liquid model

(What is the meaning of “÷”?)



Using the axial anomaly, one can replace the CP violating gauge

action above with the fermionic action,

S′θ = −iθ m
∫

d4xP (x)

P (x) = ū(x)γ5u(x) + d̄(x)γ5d(x) + s̄(x)γ5s(x)

m =
(
m−1

u + m−1
d + m−1

s

)−1

=
mu md ms

mu + md + ms

Note, that the θ term does vanish if one of the quark masses

vanishes, provided P (x) does not go like ∼ 1/m.
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Remarks on the quenched case

The QCD partition function in the presence of explicit CP vio-

lation is

Z =
∫
DAµ det[D(m) + iθmγ5] e−SG.

Setting det[D(m) + iθmγ5] = 1, we lose CP violating physics.

However, if θ is small,

det [D(m) + iθmγ5] = det[D(m)] [1+iθm tr(γ5D(m)−1) ]+O(θ2),

and we quench as usual by setting det [D(m)] = 1.
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The chiral limit
The spectral decomposition of D−1(m) leads to

D(m)|λi〉 = (λi + m)|λi〉
Nf∑

f=1

Tr
[
γ5D−1(mf)

]
=

n+ − n−
m

=
Q

m

for Nf flavors and n+ and n− the number of right- and left-

handed zero modes of D(m).

If we trade Q for −mP (using the anomaly), m̄ dependence can-

cels. Correct mass dependence of dN requires (detD(m))Nf . dN

does not vanish in the quenched chiral limit (c.f. topological

susceptibility). Recall that detD(m) ∼ m for Q 6= 0, and contri-

butions to dN vanish for Q = 0.
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more on the mf → 0 limit

Faccioli, et al.:

• In the quenched instanton liquid model dN ∼ 1/m
Nf
f

• dN ∼ mf for unquenched

• Find dN quenched is 2-4 times larger than dN unquenched
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Computational Methodology

Compute the matrix elements of the electromagnetic current

between nucleon states,

〈p′, s|Jµ|p, s〉θ = ū(p′, s)Γµ(q
2)u(p, s)

Γµ(q
2) = γµ F1(q

2)

+i σµνqν F2(q
2)

2m

+
(
γµ γ5 q2 − 2mγ5 qµ

)
FA(q2)

+σµνqνγ5
F3(q

2)

2m
,

q2 = −2E(~p)mN + 2m2
N < 0

Four terms consistent with Lorentz, gauge, CPT symmetry
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The above terms have the following transformation properties

under C,P,T:

ūγµu iūσµνqνu ū(qµ − γµ)γ5u ūσµνqνγ5u
P (−1)µ (−1)µ −(−1)µ −(−1)µ

T (−1)µ (−1)µ (−1)µ −(−1)µ

C −1 −1 +1 −1
CPT −1 −1 −1 −1

Peskin’s notation: (−1)µ = −1 for µ = 1,2,3, +1 for µ = 0.

(multiply the amplitude by i to get CPT even)
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Now we move to the lattice and Euclidean space, γi → iγi ≡ γi
E,

γ0 → γ4 ≡ γ4
E. (same as the Pauli metric used in FORM)

(ignore Aoki-Kuramashi-Shintani mixing problem for now)

compute the correlation function

G(t, t′) = 〈χN(t′, ~p′) Jµ(t, q)χ
†
N(0, ~p)〉

=
∑
s,s′
〈0|χN |p′, s′〉〈p′, s′|Jµ|p, s〉〈p, s|χ†N |0〉

×
1

2E 2E′
e−(t′−t)E′e−tE + . . .

= Gµ(q) ∗ f(t, t′, E, E′) + . . .

where “. . .” represent excited state contributions.
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Using the spinor relation∑
s

us(p)ūs(p) = −i/p + m

and setting the initial state momentum ~p = 0, we find

Gµ(q2) =
(
E′(p)γ4 − i~γ · ~p′ + m

)
×(

γµ F1(−q2) + σµνqν F2(−q2)

2m

+
(
iγµ γ5 q2 + 2mγ5 qµ

)
FA(−q2)− iσµνqνγ5

F3(−q2)

2m

)
m (1 + γ4)

where q2 = −2m2 + 2E(p′)m > 0 (Pauli, Euclidean metric).
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Use projectors to obtain linear combinations of F1 and F2, and

F3. From FORM:

γµ projector P TrP Gµ

γx
i
4
1
2(1 + γ4)γxγy −py m(F1(−q2) + F2(−q2))

(−1
2qzpx F3(−q2) + 2pxpzm2FA(−q2))

γ4
i
4
1
2(1 + γ4)γxγy - i

2pz(E + m)F3(−q2)

γ4
1
4
1
2(1 + γ4) m (E + m)(F1(−q2)− q2

(2m)2
F2(−q2))

= m (E + m)GE(−q2)

γx
1
4
1
2(1 + γ4) −i px(mF1(−q2) + E−m

2 F2(−q2))

(projectors multiplied by 1
2(1 + γ4) to project onto the positive

parity state)
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Conventional electric and magnetic form factors:

GE(q2) = F1(q
2) +

q2

(2m)2
F2(q

2)

GM(q2) = F1(q
2) + F2(q

2)

F1(0) = 1, (0) is the charge of the proton (neutron)

in units of e

F2(0) and F3(0) are related to the magnetic and electric dipole

moments
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Form a ratio of the neutron and proton correlation functions:

lim
t′�t�0

i

pz

TrPxyG4
N(t, t′, E, ~p)|θ 6=0

TrP4G4
P (t, t′, m, ~p)

=
i

pz

TrPxyG4
N(q2)|θ 6=0

TrP4G4
P (q2)

=
1

2m

F3(−q2)

G
(P )
E (−q2)

lim
q→0

=
dN

a e θ

The ratio is the electric dipole moment form factor to the electric

form factor. In the limit q → 0 this is just the electic dipole

moment of the neutron in units of a θ e.

Note that (implicit) factors of ZV cancel in the ratio.
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Similarly, the magnetic dipole moments can be obtained from

the limq→0 of the ratio’s

lim
t′�t�0

1

py

TrPxyGx
P,N(t, t′, E, ~p)|θ=0

TrP4G4
P (t, t′, E, ~p)

=
1

py

TrPxyGx
P,N(q2)|θ=0

TrP4G4
P (q2)

=
1

E + m

F1(q
2) + F2(P,N)(−q2)

G
(P )
E (−q2)

lim
q→0

=

{ 1
2m

(
1 + aµ,P

)
1

2maµ,N

where aµ denotes the anomalous part

(again, I have used the fact that F1(0) = 1 (0) is the charge of

the proton (neutron) in units of e.)
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interpolating operators

Standard “positive” parity nucleon:

B+
1 = εabc

[
uT

a Cγ5db

]
uc

B+
2 = εabc

[
uT

a Cdb

]
γ5uc

B2 couples weakly to the nucleon, vanishes as mf →∞
(non-relativistic limit).

Under Parity transformation

PB+
1,2P = +γ4B+

1,2

Negative parity:

B−
1,2 = γ5B+

1,2

PB−
1,2P = −γ4B+

1,2
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In fact, both sets couple to both parities in correlation functions.

We use B+
1 only.

For θ 6= 0, neutron has admixture of the negative parity state:

|n〉 = eiαγ5|+〉 = cosα|+〉+ iγ5 sinα|+〉
= cosα|+〉+ i sinα|−〉

Should compute the correlation function

〈[cosαB+
1 + i sinαB−

1 ](t′, ~p′) Jµ(t, q) [cosαB+
1 + i sinαB−

1 ](0, ~p)〉

Interested in the case θ � 1. Contributions from the negative

parity state to dN will go like θ2, so ignore.

This is not the mixing discussed by Aoki-Kuramashi-Shintani.
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Computing with θ 6= 0

Complex action. But since θ � 1 in Nature, expand 〈p′, s′|Jµ|p, s〉θ
to lowest order in θ.

〈O〉 =
1

Z(θ)

∫
fields

O e
−S+iθ

∫
d4x g2

32π2tr[G(x)G̃(x)]

=
iθ

Z(0)

∫
fields

QO e−S +O(θ2)

Compute F3(q
2) term in each topological sector ν, and then

average over all sectors with weight Qν

〈p′, s′|Jµ|p, s〉θ =
∑
ν

iQν〈p′, s′|Jµ|p, s〉Qν

(the right hand side is computed in CP even vacuum)
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Disadvantage: unlike the background-electric-field-method [8]

used in [5]: our method does not allow a direct calculation at

q2 = 0 (because of the explicit factors of qν for F2 and F3 terms)

On a finite lattice only the form factor F1 can be computed at

q2 = 0 [9].

Our method requires extrapolation of the form factors to q2 = 0

from non-vanishing values of q2.
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Numerical Results
Computed on 233 Nf = 2, msea = mval = 0.04, domain wall
fermion configurations (separated by 20 trajectories).
See hep-lat/0411006 (RBC Collaboration) for basic details of the
Nf = 2 DWF simulations.

Lattice: 163×32, Ls = 12, and the inverse lattice spacing in the
msea = 0 limit is a−1 ≈ 1.7 GeV.

Computed for one source/sink combination t = 0 and 10. Cur-
rently running another with t = 15 and 25. Using Gaussian
smeared source and sink. Operator (Jµ) is inserted between
source and sink.

We have averaged over time slices 4-7 and (equivalent) permu-
tations of the momenta ~p = (1,0,0), (1,1,0), and (1,1,1).
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Topological charge:

Q was computed by integrating the topological charge density

after APE smearing the gauge fields (20 sweeps with ape weight

0.45) [11].

We are also investigating computing the topological charge from

the index defined from the domain wall fermion Dirac operator

(strictly valid in the limit Ls →∞).

The correspondence between the two has been high in previous

(quenched) calculations and seems to be the case here as well.

23



Fig below examines this on a set of the dynamical

(Nf = 2) lattices that are available; there does

not seem to be any clear sign that fermions are

not seeing the correct topological charge.

BBOS -18- NEDM with DWQ 24
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limq2→0 electric ratio = dN/(a e θ)
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Approximating the q2 → 0 limit with smallest value of ~p2 (=

(2π/16)2), taking mf = 0.04 as physical yields

aP
µ ≈ 1.75(7)

aN
µ ≈ −1.75(6)

dN/a(e θ) ≈ −0.083(93).

roughly consistent with the experimental values aP
µ = 1.79 and

aN
µ = −1.91 (and of course dN ∼ 0). dN is the naive value, i.e.

(may) need to subtract unwanted mixing term.

In physical units, dN = −10.2(11.2)× 10−16 θ e− cm,

consistent with model calculations.

Error estimates are statistical uncertainties only.
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Summary/Outlook
We are striving to reduce the statistical error on our determina-
tion of dN .

Do this by measuring dN on all available Nf = 2 lattices
(∼ 1000/msea), measuring more than once on each lattice, and
using smeared sources.

Computing the sea quark mass dependence as well.

Topological charge distribution will limit the accuracy of the
current run (need longer HMC evolutions)

Future: 2+1 flavor DWF calculation, and of course, include
subtraction of mixing term a’la Aoki-Kuramshi-Shintani (and try
Chris Michael’s short-cut).
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