O(a) improvement in tmLQCD for arbitrarily small quark masses

Oliver Baer Tsukuba University

in collaboration with Sinya Aoki
Tsukuba University

ILFT Network workshop Tsukuba, Dec 8 2004

tmQCD

Twisted mass term:

$$m'e^{i\omega\gamma_5\tau_3} = m + i\mu\gamma_5\tau_3$$

 ω : twist angle

Advantages of tmQCD on the lattice:

- Quenched: No exceptional configurations
- Unquenched: Numerically cheaper than untwisted mass

A. Kennedy, Lattice 2004

- Simplified renormalization of weak matrix elements
- Automatic O(a) improvement at maximal twist $\omega = \frac{\pi}{2}$

Frezzotti, Rossi '03

No improvement factors need to be determined!

Quark bounds for O(a) improvement

Frezzotti/Rossi: O(a) improvement works only for

Frezzotti, Rossi '03

I.
$$m \gg a\Lambda_{\rm QCD}^2$$

2.
$$m \gg a^2 \Lambda_{\rm QCD}^3$$

for O(a) improved Lattice QCD (a la Symanzik)

Example:
$$a^{-1} = 2 \text{GeV}$$

$$\Lambda_{\rm QCD} = 300 {
m MeV}$$

I.
$$m \gg 45 \text{GeV}$$

too restrictive to be useful

2.
$$m \gg 7 \text{GeV}$$

accessible (but...)

Quark bounds for O(a) improvement

Our claim: O(a) improvement works

Aoki, OB '04

- I. either for arbitrary m>0
- 2. or for $m \geq a^2 \Lambda_{\mathrm{QCD}}^3$

provided maximal twist is defined appropriatly

Note: Our bounds hold independently of O(a) improvement

Outline of the talk

- Automatic O(a) improvement at maximal twist
 - Argument a la Frezzotti and Rossi
 - Caveat for small quark masses
 - Alternative proposal for maximal twist
- Pion mass in ChPT at non-zero lattice spacing
 - Brief introduction: ChPT at non-zero lattice spacing
 - * Example: O(a) improvement of the pion mass at maximal twist
- Conclusion

Twisted mass term on the lattice

Mass term + Wilson term on the lattice :

$$\bar{\psi}(x) \left[\left(-a \frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu} + M_{cr}(r) \right) + m_q \exp(iw\gamma_5 \tau_3) \right] \psi(x)$$

$$m_q = m_0 - M_{\rm cr}(r)$$

$$\uparrow \qquad \uparrow$$

bare quark mass critical quark mass

Field redefinition:

$$\psi_{\rm ph} = \exp(i\frac{\omega}{2}\gamma_5\tau_3)\psi,$$
$$\bar{\psi}_{\rm ph} = \bar{\psi}\exp(i\frac{\omega}{2}\gamma_5\tau_3)$$

$$\bar{\psi}_{\rm ph}(x) \left[\left(-a \frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu} + M_{\rm cr}(r) \right) \exp(-iw\gamma_5 \tau_3) + m_q \right] \psi_{\rm ph}(x)$$

Spurionic Symmetry

The Lattice action is invariant under

$$\mathcal{R}_5^{SP} = [r \to -r] \times [m_0 \to -m_0] \times \mathcal{R}_5$$

$$\mathcal{R}_5: \left\{ \begin{array}{ccc} \psi & \to & \psi' = \gamma_5 \psi \\ \overline{\psi} & \to & \overline{\psi}' = -\overline{\psi} \gamma_5 \end{array} \right.$$

Remember:
$$m_q = m_0 - M_{\rm cr}(r)$$

$$\implies$$
 Symmetry holds if $M_{
m cr}(-r) = -M_{
m cr}(r)$

Wilson average and O(a) improvement

The Wilson average
$$\langle O \rangle^{WA}(r,m_q,\omega) \equiv \frac{1}{2} \Big[\langle O \rangle(r,m_q,\omega) + \langle O \rangle(-r,m_q,\omega) \Big]$$
 is O(a) improved:
$$= \langle O \rangle^{\rm cont}(m_q) + O(a^2)$$

Symanzik's effective action:

$$S_{\rm Symanzik} = \int \overline{\psi}(x) \Big[\gamma_{\mu} D_{\mu} + m_q + r \, a \, C \, \sigma_{\mu\nu} G_{\mu\nu} \Big] \psi(x)$$
 some low-energy constant lattice spacing

Pauli term is odd in $r \implies$ contribution cancels by taking the Wilson average

Automatic O(a) improvement at maximal twist

Consider the twist average:

$$\langle O \rangle^{TA}(r, m_q, \omega = \frac{\pi}{2}) \equiv \frac{1}{2} \left[\langle O \rangle(r, m_q, \omega = \frac{\pi}{2}) + \langle O \rangle(r, m_q, \omega = -\frac{\pi}{2}) \right]$$

$$\exp(-i\frac{\pi}{2}\gamma_5\tau_3) = -\exp(i\frac{\pi}{2}\gamma_5\tau_3)$$

$$= \frac{1}{2} \left[\langle O \rangle(r, m_q, \omega = \frac{\pi}{2}) + \langle O \rangle(-r, m_q, \omega = \frac{\pi}{2}) \right]$$

For observables even in ω (e.g. masses):

$$\langle O \rangle (r, m_q, \omega = \frac{\pi}{2}) = \langle O \rangle^{TA} (r, m_q, \omega = \frac{\pi}{2}) = \langle O \rangle^{\text{cont}} (m_q) + O(a^2)$$

O(a) improvement without taking an average !

(My) puzzle

The argument is based entirely on symmetries

Where does the size of the quark mass enter?

The critical mass under $r \longrightarrow -r$

Crucial assumption for O(a) improvement:
$$M_{
m cr}(-r) = -M_{
m cr}(r)$$

"Proof": Consider
$$m_{\pi}(r, m_0)$$

I. Defining equation:
$$m_{\pi}(r, M_{\rm cr}(r)) = 0,$$

2. Spurionic symmetry:
$$m_\pi(r,m_0)=m_\pi(-r,-m_0)$$

1.& 2:
$$m_{\pi}(r, M_{\rm cr}(r)) = m_{\pi}(r, -M_{\rm cr}(-r)) = 0$$

3. "Conclusion":
$$M_{
m cr}(r) = -M_{
m cr}(-r)$$

Only true if the defining equation has a unique solution !

Critical Mass: Aoki's phase diagram

Sharpe, Singleton '98

Critical Mass: ChPT analysis

Two possible scenarios:

- Scenario I: No massless pion at non-zero a
- Scenario 2: Spontaneous breaking of flavor and parity Massless pions a la Aoki Quantitative result for critical mass: Width of Aoki fingers is $\mathcal{O}(a^2)$

$$\Rightarrow M_{\rm cr}(r) = M_{\rm odd}(r) + a^2 c \, M_{\rm even}(r) \equiv M_{\rm cr}^{(1)}(r)$$
$$-M_{\rm cr}(-r) = M_{\rm odd}(r) - a^2 c \, M_{\rm even}(r) \equiv M_{\rm cr}^{(2)}(r)$$

$$\Rightarrow$$
 $M_{\rm cr}(r) \neq -M_{\rm cr}(-r)$

What happens to O(a) improvement?

Ansatz:

$$M_{\rm cr}(r) = M_{\rm odd}(r) + a^2 c M_{\rm even}(r)$$

$$\Rightarrow \langle O \rangle (r, m_q, \omega = \frac{\pi}{2})^{TA} = \frac{1}{2} \left[\langle O \rangle (r, m_q, \omega = \frac{\pi}{2}) + \langle O \rangle (-r, m_q', \omega = \frac{\pi}{2} + \omega') \right]$$

$$m'_q = \sqrt{m_q^2 + (2a^2cM_{\text{even}}(r))^2}$$
 $\tan \omega' = \frac{2a^2cM_{\text{even}}(r)}{m_q}$

- \Longrightarrow Twist average = Wilson average only if $m_q\gg a^2$
- \Rightarrow Automatic O(a) improvement only if $m_q \gg a^2$

Alternative definition for the twist angle

Define:

$$\overline{M}_{
m cr}(r) = rac{M_{
m cr}(r) - M_{
m cr}(-r)}{2} = -\overline{M}_{
m cr}(-r)$$
 odd part

$$\Delta M_{
m cr}(r) = rac{M_{
m cr}(r) + M_{
m cr}(-r)}{2} = \Delta M_{
m cr}(-r)$$
 even part

→ New definition for the twist angle:

$$\bar{\psi}_{\rm ph}(x) \left[-\left(-a\frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu} + \overline{M}_{\rm cr}(r) \right) \exp(-iw\gamma_5 \tau_3) + m_q + \Delta M_{\rm cr}(r) \right] \psi_{\rm ph}(x)$$

You can show:

Twist average = Wilson average irrespective of m_q

Automatic O(a) improvement holds for all m_q

Sketch of the different definitions

Part 2: ChPT analysis of the pion mass

- Brief reminder: ChPT at non-zero a
- Example: Pion mass at maximal twist: Are the linear a-effects absent?

ChPT at nonzero a: Strategy

Two-step matching to effective theories:

Lee, Sharpe '98 Sharpe, Singleton '98

I. Lattice theory

→ Symanzik's effective theory

continuum theory making the a-dependence explicit

- 2. Symanzik's effective theory
- → ChPT

including the a-dependence

 \Rightarrow Chiral expressions for m_π, f_π ... with explicit a-dependence

Symanzik's action for Lattice QCD with Wilson fermions

Locality and symmetries of the lattice theory

$$\Rightarrow S_{eff} = S_{QCD} + \mathbf{a} c \int \overline{\psi} i \sigma_{\mu\nu} G_{\mu\nu} \psi + \mathcal{O}(\mathbf{a}^2)$$

- At O(a) only one additional operator (making use of EOM)
- c : unknown coefficient ("low-energy constant")
- $O(a^2)$: dim-6 operators: fermion bilinears Sheikholeslami, Wohlert
 - 4-fermion operators

Chiral Lagrangian including a

$$S_{eff} = S_{QCD} + \mathbf{a} c \int \overline{\psi} i \sigma_{\mu\nu} G_{\mu\nu} \psi + \mathcal{O}(\mathbf{a}^2)$$

Pauli term breaks the chiral symmetry exactly like the mass term in S_{QCD}

$$\Rightarrow \qquad \mathcal{L}_2 = \frac{f^2}{4} \mathrm{tr} \left[\partial_\mu \Sigma \partial_\mu \Sigma^\dagger \right] - \frac{f^2 B}{2} \, \mathrm{tr} \left[\Sigma^\dagger M + M^\dagger \Sigma \right]$$

$$- \frac{f^2 W_0}{2} \, a \, \mathrm{tr} \left[\Sigma + \Sigma^\dagger \right] \qquad \begin{array}{l} \text{Sharpe, Singleton '98} \\ \text{Rupak, Shoresh '02} \end{array}$$

 W_0 : new undetermined low-energy constant

\mathcal{L}_4 - Lagrangian

$$\mathcal{L}_4 = \mathcal{L}_4(p^4,p^2m,m^2) \ + \ \mathcal{L}_4(p^2a,ma) \ + \ \mathcal{L}_4(a^2)$$
 Rupak, Shoresh '02 Rupak, Shoresh, OB '03 Aoki '03 One example: $r^2W'a^2 \ (\mathrm{tr} \left[\Sigma + \Sigma^\dagger
ight])^2$

W': undetermined low-energy constant

Note: This contribution is even in r!

Pion mass including $O(a^2)$

$$m_{\pi}^2 = 2Bm + 2W_0 a - 2c_2 a^2$$
 $c_2 = -64r^2 W' \frac{W_0^2}{f^2}$

- *a*-effect: Shift in the pion mass
- m_{π}^2 does not vanish for m=0

If we define
$$m_\pi^2=0$$
 for $m'=Z_m(m_0-m_{
m cr})=0$

In ChPT this corresponds to:
$$m'=m+\frac{W_0}{B}a-\frac{c_2}{B}a^2 \implies m_\pi^2=2Bm'$$

Matching the effective theory to the lattice theory requires proper parameter matching!

Spontaneous flavor and parity breaking

Potential energy:

Sharpe, Singleton '98

$$(N_f = 2)$$

$$V = -c_1 m \operatorname{tr} \left[\Sigma + \Sigma^{\dagger} \right] + c_2 a^2 \left(\operatorname{tr} \left[\Sigma + \Sigma^{\dagger} \right] \right)^2 \qquad c_1(f, B)$$

A: $c_2 > 0$

 $\Rightarrow \Sigma_{\text{vacuum}} \neq \pm 1$

Aoki phase flavor and parity are broken massless pions at $a \neq 0$

B: $c_2 < 0$

 $\Rightarrow \Sigma_{\text{vacuum}} = \pm 1$

no flavor/parity breaking no massless pions

The realized scenario depends on the details of the underlying lattice theory (i.e. the particular Lattice action)

ChPT for tmLQCD

Symanzik action:
$$S_{eff} = S_{\mathrm{tmQCD}} + a \, \mathrm{Pauli} \, \mathrm{term} + \mathcal{O}(a^2)$$

$$\Rightarrow$$
 $\mathcal{L}_{\text{chiral}}[m, \omega, a, a^2]$

a: Muenster, Schmidt

 a^2 : Sharpe, Wu

$$\implies m_{\pi}^2, f_{\pi}$$
 as a function of m, ω, a, a^2

Again: Proper parameter matching required ! Here m and ω

Check for O(a) improvement of the pion mass

- I. Lagrangian $\mathcal{L}_{\mathrm{chiral}}$ potential Energy $\mathcal{V}_{\mathrm{chiral}}$
- 2. Find ground state $\Sigma_0 = e^{i\phi au_3}$ by $\frac{\mathrm{d} \mathcal{V}_{\mathrm{chiral}}}{\mathrm{d} \phi} = 0$
- 3. Expand around Σ_0 and find m_π^2 (to LO)
- 4. Express m_π^2 in terms of the twist angle $\,\omega\,$ corresponding to the lattice theory
- 5. Go to $\omega = \frac{\pi}{2}$ and check for $\mathcal{O}(a)$

I assume: $c_2 > 0$ Existence of an Aoki phase and massless pions

Definition of Frezotti / Rossi

Definition of ω : Lattice theory

$$(m_0 - M_{\rm cr}(r))e^{i\omega\tau_3\gamma_5}$$

Effective theory

$$\tan \omega = \frac{2Bm_L \sin \omega_L}{2Bm_L \cos \omega_L + 2W_0 a - 2c_2 a^2}$$

For $\omega = \pi/2$ $(\mu := m_L \sin \omega_L)$

I.
$$2B\mu \geq \mathcal{O}(a)$$
 \Rightarrow $m_{\pi_a}^2 = 2B\mu + 2c_2a^2$ $m_{\pi_a}^2 - m_{\pi_a}^2 = 2c_2a^2$

2.
$$2B\mu \ll 2c_2a^2$$
 \Rightarrow $m_{\pi_a}^2 = (c_2a^2)^{1/3}(2B\mu)^{2/3}$ $m_{\pi_a}^2 - m_{\pi_3}^2 = 2(c_2a^2)^{1/3}(2B\mu)^{2/3}$

O(a) improvement only in case I

Alternative definition for the twist

Definition of ω : Lattice theory

$$\left(m_0 - \frac{M_{\rm cr}(r) - M_{\rm cr}(-r)}{2}\right)e^{i\omega\tau_3}$$

Effective theory

$$\tan \omega = \frac{2Bm_L \sin \omega_L}{2Bm_L \cos \omega_L + 2W_0 a}$$

For
$$\omega = \pi/2$$
 $(\mu := m_L \sin \omega_L)$

Without restrictions on $2B\mu$ \Longrightarrow

$$m_{\pi_a}^2 = 2B\mu$$

$$m_{\pi_a}^2 - m_{\pi_3}^2 = 2c_2a^2$$

Automatic O(a) improvement irrespective of the size of μ !

Note: Shown only for the purely linear term in a , not for $am,\ am^2,\dots$

Twist angle from Ward identities

In continuum tmQCD:
$$\tan \omega_{\rm WT} = \frac{\langle \partial_{\mu} V_{\mu}^2 \ P^1 \rangle}{\langle \partial_{\mu} A_{\mu}^1 \ P^1 \rangle}$$

Vector and Axial vector WT identities:

$$\partial_{\mu}V_{\mu}^{a} = -2\mu\epsilon^{3ab}P^{b}$$

$$\partial_{\mu}A^{a}_{\mu} = 2mP^{a} + 2i\mu S^{0}\delta_{a3}$$

$$\Rightarrow \qquad \tan \omega_{\rm WT} = \frac{\mu}{m}$$

ω_{WT} in the effective theory

I. Maximal twist of Frezzotti / Rossi:

For
$$2B\mu \ll 2c_2a^2$$
 \Rightarrow $\tan \omega_{\rm WT} \simeq (\frac{2B\mu}{2c_2a^2})^{1/3}$ \Rightarrow $\omega_{\rm WT} \neq \pi/2$ $(\omega_{\rm WT} = 0 \text{ for } \mu = 0)$

2. Alternative definition:

$$\tan \omega_{\mathrm{WT}} = \infty$$

$$\omega_{\mathrm{WT}} = \pi/2 = \omega$$

Second scenario

$$c_2 < 0 \implies$$

- Ist order phase transition
- No massless pions at $a \neq 0$

Consider $m_\pi(r,m_0)$

Defining equation for critical quark mass:

$$m_{\pi}(r, M_{\rm cr}(r)) = m_{\pi, \rm min}$$

ChPT: minimal value is unique

$$\implies M_{\rm cr}(-r) = -M_{\rm cr}(r)$$

ChPT result (untwisted mass)

Sharpe, Singleton '98

 \Rightarrow Automatic O(a) improvement for all m

Phase diagram for $c_2 < 0$

Endpoints of the phase transition line:

$$\mu_{\rm cr}^{(\pm)} = \pm \frac{c_2}{B} a^2$$

Automatic O(a) improvement fails for $|\mu| < \mu_{\rm cr}^{(+)}$

O(a) improvement a la Symanzik

Quark mass bounds for automatic O(a) improvement at maximal twist:

I.
$$c_2 > 0$$
 arbitrary $\mu > 0$

2.
$$c_2 < 0$$
 $\mu > a^2 \frac{c_2}{B} = a^2 \Lambda_{\text{QCD}}^3$

Results are independent of O(a) Symanzik improvement!

but: Adding a clover term may change the value of $c_2 \implies$ indirect dependency

Recent paper by S. Sharpe and J.Wu: Same conclusion

Conclusion

Automatic O(a) improvement should work for twisted quark masses

down to
$$\mu pprox a^2 \Lambda_{
m QCD}^3$$
 (or even $\mu > 0$)

The two quark mass bounds given by Frezzotti / Rossi

I.
$$\mu\gg a\Lambda_{
m QCD}^2$$
 2. $\mu\gg a^2\Lambda_{
m QCD}^3$

are too strong

• Automatic O(a) improvement requires $M_{\rm cr}(-r) = -M_{\rm cr}(r)$

This is not automatically guaranteed!

What next?

Scaling analysis of tm LQCD at maximal twist

* Confirm the a^2 -scaling for small quark masses

Confirm the scaling violation for "wrong" twist angle.

Preliminary results by the $\chi_{\mathbf{F}}$ Collaboration (Izu workshop Sep '04)

They do find deviations for small quark masses

Does the effective theory describe the scaling violation correctly?

Scaling of the vector meson mass

XIF Collaboration
PRELIMINARY RESULTS!

plots by A. Shindler, Sep 2004