# Looking back and looking ahead

- Lattice QCD in an international setting -

Akira Ukawa Center for Computational Sciences University of Tsukuba

Looking back

**Status of ILDG** 

Status of PACS-CS Development

Looking ahead





#### Odd number of flavors has become standard:

- Multi-boson methods
- Polynomial HMC
- Rational HMC

#### Acceleration tricks that seem to work

- Hasenbusch preconditioning
- Domain decomposition
- Multi-time step evolution

promising 5-10 times speedup for Wilson-type quark action





### Revolutionary period

- "once every 10 years" event
- previous was 1996 with CP-PACS/QCDSP
- Perhaps more exciting since
  - Finally Nf=2+1
  - Finally chiral
    - No excuse necessary to experiment/theory colleagues outside lattice QCD
  - Burst of activities is worldwide



# Status of ILDG





# Technical preparations

### OCDml v1.1

- Standard for configuration file description
- Adopted in August 2004/some updates
- Binary file format v1.0
  - Standard for configuration file format
  - Adopted in May 2005
- Middleware architechture
  - ILDG stipulates only the interface; detailed implementation left to each country
  - Adopted in Dec. 2004/refined in May 2005

Tremendous amount of work done and being done by the members of the Metadata and Middleware Working Groups

| -[( | 5      |  |
|-----|--------|--|
|     | $\sim$ |  |

## Organizational aspects

- Particpating countries as of now
  - UK/USA/Germany/Japan
  - France/Italy showing interest
- ILDG Board
  - One representative from each country
  - Board chair with one year term
    - 2003 R. Kenway(UK)
    - 2004 A. Ukawa(Japan)
    - 2005 R. Brower(USA)
    - 2006 K. Jansen(Germany)
- Web page

http://www.lqcd.org/ildg/



## ILDG Data sharing policy 7 July 2004

In addition to the normal practice of sharing data within restricted groups for specific joint projects, collaborations that are generating substantial sets of gauge configurations should

- mark up their data using the QCDML standard;
- adopt a policy to make their data generally available as soon as possible;
- announce on the ILDG web pages, at the time of production, their chosen action and parameter values, and when their configurations will be made generally available through ILDG.





http://www.lqa.ccs.tsukuba.ac.jp/

stores gauge configurations and makes them available to lattice community world-wide CP-PACS Wilson-clover Nf=2 configs CP-PACS/JLQCD Wilson-clover Nf=2+1 configs (soon)

- set up in Dec.2003 and maintained by CCS
- prototype implementation of ILDG architecture
  - MDC on Xindice, No RC, Interactive search
  - XML files written based on old QCDML draft
  - file format based on previous proposal
- will be dissolved and absorbed into JLDG



- Japanese domestic network for theoretical high energy physics
  - uses SuperSINET 1Gbps private networks (NII)
  - major LQCD sites in Japan are connected
  - file mirroring for Japanese collab's (60TB, 6 sites)
     maintained by hand
  - data distributed over many disks, because data size exceeds partition size















# Status of PACS-CS

Parallel Array Computer System for Computational Sciences





Essentially, an MPP with commodity components

Build a "semi-dedicated" cluster appropriate for lattice QCD (and a few other applications)

- Single CPU/node with fastest memory bus available
- Judicious choice of network topology
  - (3-dimensional hyper-crossbar)
  - Multiple Gigbit Ethernet from each node for high aggregate bandwidth
  - Large number of medium-size switches to cut switch cost
- Mother board design to accommodate these features

# PACS-CS hardware specifications

#### Node

- Single low-voltage Xeon 2.8GHz 5.6Gflops
- 2GB PC3200 memory with FSB800 6.4GB/s
- 160GB disk (Raid1 mirror)
- Network
  - 3-dimensional hyper-crossbar topology
  - Dual Gigabit Ethernet for each direction, i.e., 0.25GB/s/link and an agregate 0.75GB/s/node (better than InfiniBand(x4) shared by dual CPU)

### System size

16x16x10=2560 nodes, 14.3Tflops peak, 5.12TB memory,













#### Written and optimized by K. Ishikawa

- Mult benchmark v2.62\_sse3\_64
  - Measures performance for Wilson-clover hopping term

$$\left(1+c_{sw}F\cdot\sigma\right)^{-1}\sum_{\mu}\left(\left(1-\gamma_{\mu}\right)U_{n\mu}+\left(1+\gamma_{\mu}\right)U_{n\mu}^{*}\right)$$

- Compiled with Intel C Compiler for EM64T, Version 8.1 Intel Fortran Compiler for EM64T, Version 8.1
- Same hardware spec as PACS-CS LV-Xeon 2.8GHz EM64T/FSB800/DDR2 2GB 2-way interleave

#### 8x8x8x64 result

- C with SSE3 assembler coding
- C with Intel intrinsic function

Fortran

1.87Gflops (33%) 1.91Gflops (34%) 1.45Gflops (26%)

| 6 | QCDMult benchmark performance analysis         |                    |        |      |             |                |        |                 |  |
|---|------------------------------------------------|--------------------|--------|------|-------------|----------------|--------|-----------------|--|
|   | #floating operations and I/O with Mult routine |                    |        |      |             |                |        |                 |  |
|   | ■ #f                                           | lop ex             | ecuted | b    | 18          | 2.68 Byte/flop |        |                 |  |
|   | #                                              | /O ne              | eded   |      | 5088 Byte _ |                |        |                 |  |
|   | Since                                          | Since max I/O poss |        |      |             | 6.4GB          | yte/s, |                 |  |
|   | max f                                          | loatir             | ig spe | ed = | 6.4/2       | 2.68           | 2.39   | 9 Gflops(37.3%) |  |
|   |                                                |                    |        |      |             |                |        |                 |  |
|   |                                                | flop               |        | Load |             | Store          | Byte/  |                 |  |
|   |                                                | •                  | İ      | (B)  | /te)        | (Byte)         | тюр    |                 |  |
|   | mult                                           | add                | total  | U    | р           | q              |        |                 |  |

|        |      | flop |       | Lo<br>(By | ad<br>/te) | Store<br>(Byte) | Byte/<br>flop |
|--------|------|------|-------|-----------|------------|-----------------|---------------|
|        | mult | add  | total | U         | р          | q               |               |
| t      | 168  | 120  | 288   | 288       | 384        | 192             | 3.00          |
| x      | 144  | 192  | 336   | 288       | 576        | 192             | 3.14          |
| У      | 144  | 192  | 336   | 288       | 576        | 192             | 3.14          |
| z      | 144  | 192  | 336   | 288       | 576        | 192             | 3.14          |
| clover | 288  | 312  | 600   | 672       | 192        | 192             | 1.76          |
| total  | 888  | 1008 | 1896  | 1824      | 2304       | 960             | 2.68          |

CPU CPU memory

27

## Network driver PM/Ethernet-HXB

Being developed by S. Sumimoto, K. Kumon, T. Boku, M. Sato



Ζ



| 6 | Network performance estimate (I)                |
|---|-------------------------------------------------|
|   | 32x32x32x64 lattice on 8x8x8=512 nodes          |
|   | BiCGStabL2 solver                               |
|   | QCDMult called 8 times                          |
|   | Calculation 2208*Nsite/2=4.522Mflop in addition |
|   | Communication Global sum called 6 times         |
|   | QCDMult                                         |
|   | Calculation (1296+600)*(Nsite/2) = 3.883 Mflop  |
|   | Communication Ny*Nz*Nt/2*192 = 96kByte          |
|   | for +xyz simultaneously                         |
|   | Same for –xyz                                   |
|   |                                                 |























- 48 port GB switch
- Hitachi Wires Apresia 4348GT
- □ Latency 3~5 microsec
- □ Throughput test OK













# Looking ahead



### PACS-CS Collaboration

- Formed in August 2005
- Kanaya, Aoki, Yoshie, Ishizuka, Kuramashi, Taniguchi,
   T. Ishikawa, Sasaki, Ukawa/Tsukuba
- Tsutsui/KEK
- Okawa, K. Ishikawa/Hiroshima



| <ul> <li>Nf=2 code for plaquette gauge + naïve Wilson</li> <li>Written and tested on 16x32 at beta=5.6, K=0.15750 (one of Luescher runs)</li> </ul>                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Nf=2 code for Iwasaki RG glue + Wilson-clover</li> <li>Written and tested on 16x32 at beta=1.8,<br/>Kud=0.1409 (one of CP-PACS runs)</li> </ul>                                                                |
| <ul> <li>Nf=2+1 code for Iwasaki RG glue + Wilson-<br/>clover (PHMC for strange quark)</li> <li>Written</li> <li>Being tested on 16x32 at beta=1.83, Kud=0.13655,<br/>Ks=0.13710 (one of CP-PACS/JLQCD runs)</li> </ul> |



# A paper estimate one year ago

|       |             |                        |     | S      | tandard<br>HMC |        |    |    | dor | main-d        | ecomp  | osed H | N | IC        |               |                 |
|-------|-------------|------------------------|-----|--------|----------------|--------|----|----|-----|---------------|--------|--------|---|-----------|---------------|-----------------|
| 1/a   | latt<br>siz | lattice<br>size pi/rho |     | 1      | 0000traj       | #steps |    |    |     | time/traj(hr) |        |        |   | 10000traj | a<br>le<br>io | cce<br>rat<br>n |
| (GeV) | N<br>s      | N<br>t                 |     | (days) |                | N      | 10 | N1 | N2  | calc          | comm   | total  |   | (days)    |               |                 |
|       |             |                        | 0.6 |        | 26             |        | 4  | 5  | 5   | 0.031         | 0.005  | 0.037  |   | 4         |               | 7               |
|       |             |                        | 0.5 |        | 65             |        | 4  | 5  | 6   | 0.058         | 0.010  | 0.068  |   | 7         |               | 9               |
| 2     | 24>         | (48                    | 0.4 |        | 180            |        | 4  | 5  | 7   | 0.110         | 0.019  | 0.129  |   | 13        |               | 13              |
|       |             |                        | 0.3 |        | 629            |        | 4  | 5  | 8   | 0.230         | 0.041  | 0.271  |   | 28        |               | 22              |
|       |             |                        | 0.2 |        | 5372           |        | 4  | 5  | 9   | 0 747         | 0 1.39 | 0.880  |   | 92        |               | 59              |
|       |             |                        | 0.6 |        | 118            |        | 5  | 6  | 6   | 0.181         | 0.018  | 0.199  |   | 21        |               | 6               |
|       |             |                        | 0.5 |        | 303            |        | 5  | 6  | 7   | 0.333         | 0.033  | 0.366  |   | 38        |               | 8               |
| 2.83  | 32>         | (64                    | 0.4 |        | 860            |        | 5  | 6  | 9   | 0.713         | 0.071  | 0.784  |   | 82        |               | 11              |
|       |             |                        | 0.3 |        | 3036           |        | 5  | 6  | 10  | 1.475         | 0.147  | 1.622  |   | 169       |               | 18              |
|       |             |                        | 0.2 |        | 26238          |        | 5  | 6  | 11  | 4.739         | 0.473  | 5.213  |   | 543       |               | 48              |

Only a paper estimate, but more than encouraging .....

Implementation in progress

| Scaling test started in February   |
|------------------------------------|
| Nf=2+1; beta=1.90 1/a=2GeV 16^3x32 |
| Pi/rho= 0.8 Kud heaviest           |
| O.6 Kud lightest                   |
| 0.5 tune from hadron mass data     |
| O.4 ditto                          |

*We'll soon know how light we can go down with PACS-CS* 



#### KEK supercomputer facility

- 1985 Hitachi S810/10
- 1989 Hitachi S820/80
- 1995 Fujitsu VPP500
- 2000 Hitachi SR8000 F1
- 350 MFlops3 GFlops128 GFlops1.2 TFlops



Hitachi SR11000 K12.IBM BlueGene/L57

2.1Tflops 57.3Tflops(10 racks)

Supported by a regular funding for computing Upgrade every 5-6 years (so far)





| JLQCD and physics program                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Members</li> <li>Hashimoto, Kaneko, Yamada, Okamoto,<br/>Matsufuru/KEK</li> <li>Kanaya, Aoki, Yoshie, Ishizuka, Kuramashi, Taniguchi,<br/>Ukawa/Tsukuba</li> <li>Onogi, Ukita/kyoto</li> <li>Okawa, Ishikawa/hiroshima</li> </ul> |
| <ul> <li>Dynamical overlap program</li> <li>Coding and optimization</li> <li>Choice of gauge action</li> <li>Choice of run parameters</li> </ul>                                                                                           |





- We've come a long way since the time of Izu Workshop
- □ An exciting period ahead
- Hope ILFT Network has served its purpose in the building up of ILDG and promoting international exchange within our community
- But, perhaps time to think about new ideas and new format on how we organize and run the ILFT Network