Asymptotic Scaling, Lattice Artefacts and all that.

Aurora Trivini, CRA

(Poster presented by A. Trivini at Lattice 2005, July 2005, Dublin) PoS(LAT2005)036

Mike Teper

Failure of Asymptotic Scaling (Quenched)

String Tension

- **Review lack of Asymptotic Scaling in** g_0
- Renormalised Coupling Approach (Parisi, Lepage-Mackenzie)
- Introduce "Lattice Distorted Perturbation Theory"
- SU(3) results
- SU(N) results

$$\beta(g^2) = -a\frac{dg^2}{da} = -2b_0g^4 - 2b_1g^6 - 2b_2^Lg^8,$$

where $b_{0,1}$ are universal

Integrating \longrightarrow

$$a^{-1}(g^2) = \frac{\Lambda}{f_{PT}(g^2)},$$

where Λ is the integration constant, and

$$f_{PT}(g^2) = e^{-\frac{1}{2b_0 g^2}} (b_0 g^2)^{\frac{-b_1}{2b_0^2}} (1 + \underbrace{\frac{1}{2b_0^3}(b_1^2 - b_2^L b_0)}_{d_2^L} g^2)$$

Failure of g_0 Asymptotic Scaling

Parisi; Lepage, Mackenzie

The lack of asymptotic scaling is due to the poor convergence of the g_0 series.

Parisi; Lepage, Mackenzie

The lack of asymptotic scaling is due to the poor convergence of the g_0 series.

Attempt to *re-sum* the higher order terms by using a Monte Carlo quantity whose perturbative expansion is known to define a *renormalised* coupling. E.g.

$$1 - < \frac{1}{3} Tr U_{plaq} > = c_1 g_0^2 + c_2 g_0^4 + \dots$$

So, define g_E using:

$$1 - \langle \frac{1}{3} Tr U_{plaq} \rangle \equiv c_1 g_E^2 \,.$$

Many other possibilities have been tried: g_E Parisi 1980, g_{E2} Bali & Schilling 1993, $g_{\overline{MS}}$ El Khadra et al 1992, g_{VI} , g_{VII} Lepage & Mackenzie 1993

String Tension (2 loop fits)

String Tension (3 loop fits)

Scheme	d_2^L	$\chi^2/d.o.f.$
g_0	$\equiv 0.189615162$	900
g_E	$\equiv 0.01161$	68
g_{E2}	1.01 ± 0.13	3.4
$g_{\overline{MS}}$	12 ± 5	3.6
g_{VII}	0.151 ± 0.014	5.3
g_{VI}	4.6 ± 0.9	3.3

CRA, Nucl. Phys. **B437** (1995) 641, hep-lat/9610016

- Idea is that the discrepancy btw Monte Carlo Data and Asymptotic Scaling is due to lattice artefacts
- \rightarrow introduce $\mathcal{O}(a^n)$ term(s)

CRA, Nucl. Phys. **B437** (1995) 641, hep-lat/9610016

Idea is that the discrepancy btw Monte Carlo Data and Asymptotic Scaling is due to lattice artefacts

• \rightarrow introduce $\mathcal{O}(a^n)$ term(s)

$$\beta_L(g_0^2) = -a \frac{dg_0^2}{da} = -\left(2b_0 g_0^4 + 2b_1 g_0^6 + 2b_2^L g_0^8 + \sum_{l=4} b_{l-1}^L g_0^{2l+2}\right) \\ \times \left(1 + \sum_{n=1} c_n (g_0^2) a^n (g_0^2)\right)$$

Integrating \longrightarrow

$$a^{-1}(g_0^2) = \frac{\Lambda}{f_{PT}(g_0^2)} \times \left(1 + \sum_{l=4}^{n-1} d_{l-1} g_0^{2l-4}\right)^{-1} \times \left(1 + \sum_{n=1}^{n-1} c'_n(g_0^2) f_{PT}^n(g_0^2)\right)^{-1} \times \left(1 + \sum_{l=4}^{n-1} d_{l-1} g_0^{2l-4}\right)^{-1} \times \left(1 + \sum_{l=4}^{n-1} d_{l-1} g$$

Convenient to write this as

$$a^{-1}(g_0^2) = \frac{\Lambda}{f_{PT}(g_0^2)} \times \left(1 - \frac{X}{G_0^{\nu} f_{PT}^n(g_0^2)}{G_0^{\nu} f_{PT}^n(G_0^2)} - \frac{Y}{G_0^{\nu'} f_{PT}^{n'}(g_0^2)}{G_0^{\nu'} f_{PT}^{n'}(G_0^2)}\right)$$

where G_0 is some convenient standard (e.g. for Wilson $G_0 = 1 \iff \beta = 6.0$) Convenient to write this as

$$a^{-1}(g_0^2) = \frac{\Lambda}{f_{PT}(g_0^2)} \times \left(1 - \frac{X}{G_0^{\nu} f_{PT}^n(G_0^2)} - \frac{Y}{G_0^{\nu'} f_{PT}^{n'}(G_0^2)} - \frac{Y}{G_0^{\nu'} f_{PT}^{n'}(G_0^2)}\right)$$

where G_0 is some convenient standard (e.g. for Wilson $G_0 = 1 \iff \beta = 6.0$)

		Gauge Action								
	Wilson	Iwasaki	DBW2							
a_{r_0,r_c}	$\mathcal{O}(g^2a^2) + \mathcal{O}(g^2a^4)$	$\mathcal{O}(g^2a^2) + \mathcal{O}(g^2a^4)$	$\mathcal{O}(g^2a^2) + \mathcal{O}(g^2a^4)$							
a_{σ}	$\mathcal{O}(a^2) + \mathcal{O}(a^4)$	$\mathcal{O}(a^2) + \mathcal{O}(a^4)$	$\mathcal{O}(a^2) + \mathcal{O}(a^4)$							
a_{T_c}	$\mathcal{O}(a^2) + \mathcal{O}(a^4)$	$\mathcal{O}(a^2) + \mathcal{O}(a^4)$	$\mathcal{O}(a^2) + \mathcal{O}(a^4)$							
		Fermionic action								
a_{K-K^*}		$\mathcal{O}(g^2a) + \mathcal{O}(a^2)$								

	a	$^{-1}$ [Gev] from			
β	r_C	$\sqrt{\sigma}$	T_c	Action	Ref.
5.6925			1.2000(3)	Wilson	Necco 2003
5.6925		1.108(5)		Wilson	Lucini et al 2004
5.6993		1.119(5)		Wilson	Lucini et al 2004
5.7995		1.398(5)		Wilson	Lucini et al 2004
5.8		1.404(6)		Wilson	Lucini et al 2004
5.8941			1.8000(11)	Wilson	Necco 2003
5.8945		1.688(7)		Wilson	Lucini et al 2004
5.95	1.985(8)			Wilson	Necco 2003
6.0624			2.4000(34)	Wilson	Necco 2003
6.0625		2.260(8)		Wilson	Lucini et al 2004
6.07	2.424(8)			Wilson	Necco 2003
6.2	2.973(16)			Wilson	Necco 2003
6.3380			3.6000(99)	Wilson	Necco 2003
6.3380		3.403(18)		Wilson	Lucini et al 2004
6.4	3.938(16)			Wilson	Necco 2003
6.57	4.903(31)			Wilson	Necco 2003
6.69	5.719(39)			Wilson	Necco 2003
6.81	6.661(39)			Wilson	Necco 2003
6.92	7.704(55)			Wilson	Necco 2003

	a^{-1} [Gev] from					
β	r_C	$\sqrt{\sigma}$	T_c	Action	Ref.	
5.6925			1.2000(3)	Wilson	Necco 2003	
5.6925		1.108(5)		Wilson	Lucini et al 2004	
5.6993		1.119(5)		Wilson	Lucini et al 2004	
5.7995		1.398(5)		Wilson	Lucini et al 2004	
5.8		1.404(6)		Wilson	Lucini et al 2004	$r_0 = 0.49 fm$
5.8941			1.8000(11)	Wilson	Necco 2003	
5.8945		1.688(7)		Wilson	Lucini et al 2004	$r_c = 0.5133 \times r_0$
5.95	1.985(8)			Wilson	Necco 2003	defined via $r^2 F(r) = 0.6$
6.0624			2.4000(34)	Wilson	Necco 2003	$\operatorname{defined}\operatorname{via} r_c I(r_c) = 0.00$
6.0625		2.260(8)		Wilson	Lucini et al 2004	$\sqrt{2} = 440 M_{\odot} V$
6.07	2.424(8)			Wilson	Necco 2003	$\sqrt{o} = 440MeV$
6.2	2.973(16)			Wilson	Necco 2003	
6.3380			3.6000(99)	Wilson	Necco 2003	$T_c \equiv 300 MeV = \frac{1}{N_t a(\beta_c)}$
6.3380		3.403(18)		Wilson	Lucini et al 2004	
6.4	3.938(16)			Wilson	Necco 2003	
6.57	4.903(31)			Wilson	Necco 2003	
6.69	5.719(39)			Wilson	Necco 2003	
6.81	6.661(39)			Wilson	Necco 2003	
6.92	7.704(55)			Wilson	Necco 2003	

Monte Carlo Data Used (non-Wilson)

		a^{-1} [G				
β	r_0	$\sqrt{\sigma}$	T_c	$K - K^*$	Action	Ref.
2.1551	0.934(4)		0.9000(13)		Iwasaki	Necco 2003
2.187	1.004(14)	0.947(7)		1.024(12)	Iwasaki	CP-PACS 2002
2.214	1.056(17)	0.997(6)		1.077(13)	Iwasaki	CP-PACS 2002
2.247	1.128(11)	1.063(6)		1.131(14)	Iwasaki	CP-PACS 2002
2.281	1.209(15)	1.141(7)		1.164(16)	Iwasaki	CP-PACS 2002
2.2879	1.219(2)		1.2000(16)		Iwasaki	Necco 2003
2.334	1.325(9)	1.249(7)		1.259(15)	Iwasaki	CP-PACS 2002
2.416	1.540(5)	1.450(8)		1.423(20)	Iwasaki	CP-PACS 2002
2.456	1.643(6)	1.556(16)		1.541(16)	Iwasaki	CP-PACS 2002
2.487	1.726(6)	1.634(12)		1.597(20)	Iwasaki	CP-PACS 2002
2.5206	1.817(3)		1.8000(52)		Iwasaki	Necco 2003
2.528	1.840(8)	1.743(15)		1.699(21)	Iwasaki	CP-PACS 2002
2.575	1.968(6)	1.858(12)		1.812(22)	Iwasaki	CP-PACS 2002
2.7124	2.416(10)		2.4000(98)		Iwasaki	Necco 2003
0.75696	0.896(5)		0.9000(11)		DBW2	Necco 2003
0.82430	1.223(7)		1.200(14)		DBW2	Necco 2003
0.9636	1.835(10)		1.8000(54)		DBW2	Necco 2003
1.04	2.196(11)				DBW2	Necco 2003

a^{-1} from $K - K^*$ mass point - Method of Planes

$\mathcal{O}(a)$ Order	PT Order	Quantity	Λ_L [Mev]	X	Y	$\chi^2/{ m dof}$	$\Lambda_{\overline{MS}}$ [Mev]
LO	2 Loop	r_c	6.41(2)	0.210(4)	-	2.2	184.8(6)
LO	2 Loop	T_c	6.163(7)	0.1776(4)	-	55	177.6(2)
LO	2 Loop	σ	5.94(2)	0.194(2)	-	2.1	171.1(7)
LO	3 Loop	r_c	7.48(2)	0.193(4)	-	1.2	215.5(7)
LO	3 Loop	T_c	7.250(8)	0.1683(4)	-	41	208.9(2)
LO	3 Loop	σ	6.97(3)	0.184(2)	-	1.5	200.9(8)
NLO	2 Loop	r_c	6.50(3)	0.27(2)	-0.047(16)	0.87	187(1)
NLO	2 Loop	T_c	6.44(3)	0.231(5)	-0.020(2)	0.44	185.6(8)
NLO	2 Loop	σ	6.09(6)	0.23(1)	-0.016(5)	0.40	175(2)
NLO	3 Loop	r_c	7.54(4)	0.23(2)	-0.031(16)	0.69	217(1)
NLO	3 Loop	T_c	7.53(3)	0.213(5)	-0.016(2)	0.87	216.8(9)
NLO	3 Loop	σ	7.12(7)	0.21(1)	-0.012(5)	0.42	205(2)

$$a^{-1}(g_0^2) = \frac{\Lambda}{f_{2PT}(g_0^2)(1 + d_2^L g_0^2)} \times (1 - X\mathcal{O}a^n - Y\mathcal{O}a^{n'})$$

Fit Results: Iwasaki

$\mathcal{O}(a)$ Order	PT Order	Quantity	Λ_L [Mev]	X	Y	d_2^L	χ^2 /dof
LO	2 Loop	r_0	225.6(5)	0.0563(4)	-	-	5.4
LO	2 Loop	T_c	235.5(7)	0.1704(9)	-	-	5.1
LO	2 Loop	σ	222(1)	0.163(3)	-	-	0.63
LO	2 Loop	a_{K-K^*}	216(3)	0.073(4)	-	-	0.98
LO	3 Loop	r_0	490(80)	0.040(2)	-	0.5(2)	0.6
LO	3 Loop	T_c	290(20)	0.158(4)	-	0.10(4)	0.5
LO	3 Loop	σ	350(140)	0.13(2)	-	0.3(3)	0.4
LO	3 Loop	a_{K-K^*}	2(2) ×10 ³	0.006(6)	-	4(5) ×10 ³	0.69
NLO	2 Loop	r_0	238(2)	0.083(3)	-0.0099(12)	-	0.44
NLO	2 Loop	T_c	241(2)	0.193(7)	-0.007(2)	-	0.97
NLO	2 Loop	σ	231(7)	0.21(3)	-0.02(1)	-	0.39
NLO	2 Loop	a_{K-K^*}	300(50)	0.35(11)	-0.4(2)	-	0.59
NLO	3 Loop	r_0	260(70)	0.08(2)	-0.008(4)	0.05±0.14	0.47
NLO	3 Loop	σ	110(30)	0.4(1)	-0.06(2)	-0.27(6)	0.3
NLO	3 Loop	a_{K-K^*}	160(50)	0.50(9)	-0.57(11)	-0.28(9)	0.67

$$a^{-1}(g_0^2) = \frac{\Lambda}{f_{2PT}(g_0^2)(1 + d_2^I g_0^2)} \times (1 - X\mathcal{O}a^n - Y\mathcal{O}a^{n'})$$

$\mathcal{O}(a)$ Order	PT Order	Quantity	Λ_L [Mev]	X	Y	d_2^L	$\chi^2/{ m dof}$
LO	2 Loop	r_0	1352(8)	0.0550(3)	-	-	2
LO	2 Loop	T_{c}	1894(7)	0.4995(7)	-	-	141
LO	3 Loop	r_0	1500(200)	0.053(2)	-	0.02(2)	3
NLO	2 Loop	r_0	1420(60)	0.07(1)	-0.008(7)	-	2.9

$$a^{-1}(g_0^2) = \frac{\Lambda}{f_{2PT}(g_0^2)(1 + d_2^L g_0^2)} \times (1 - X\mathcal{O}a^n - Y\mathcal{O}a^{n'})$$

Plots: Wilson Case

Plots: Wilson Case: Data/Fit

Plots: Iwasaki Case

Plots: Iwasaki Case: Data/Fit

Renormalised Coupling Case - g_E

The lack of asymptotic scaling is due to the poor convergence of the g_0 series.

The lack of asymptotic scaling is due to the poor convergence of the g_0 series.

Attempt to *re-sum* the higher order terms by using a Monte Carlo quantity whose perturbative expansion is known to define a *renormalised* coupling. E.g.

$$1 - < \frac{1}{3} Tr U_{plaq} > = c_1 g_0^2 + c_2 g_0^4 + \dots$$

So, define g_E using:

$$1 - \langle \frac{1}{3} Tr U_{plaq} \rangle \equiv c_1 g_E^2$$

The lack of asymptotic scaling is due to the poor convergence of the g_0 series.

Attempt to *re-sum* the higher order terms by using a Monte Carlo quantity whose perturbative expansion is known to define a *renormalised* coupling. E.g.

$$1 - < \frac{1}{3} Tr U_{plaq} > = c_1 g_0^2 + c_2 g_0^4 + \dots$$

So, define g_E using:

$$1 - \langle \frac{1}{3} Tr U_{plaq} \rangle \equiv c_1 g_E^2$$

Combine g_{renorm} with LDPT

Edwards, Heller, Klassen 1997

Renormalised Coupling Case - g_E

$\mathcal{O}(a)$ Order	PT Order	Quantity	Λ_L [Mev]	X	Y	$\chi^2/{ m dof}$	$\Lambda_{\overline{MS}}$ [Mev]
zero	2 Loop	r_c	17.42(3)			31	241.6(4)
zero	2 Loop	T_c	16.435(4)			694	227.96(5)
zero	2 Loop	σ	15.51(2)			71	215.1(3)
zero	3 Loop	r_c	17.65(3)			29	244.9(4)
zero	3 Loop	T_c	16.691(4)			632	231.50(5)
zero	3 Loop	σ	15.74(3)			68	218.3(4)
LO	2 Loop	r_c	18.08(5)	0.051(3)		0.6	250.8(7)
LO	2 Loop	T_c	17.04(2)	0.0129(3)		253	236.4(2)
LO	2 Loop	σ	16.51(6)	0.033(2)		15	229.1(8)
LO	3 Loop	r_c	18.30(5)	0.049(3)		0.6	253.8(8)
LO	3 Loop	T_c	17.27(2)	0.0122(3)		247	239.6(2)
LO	3 Loop	σ	16.73(6)	0.032(2)		14	232.1(8)
NLO	2 Loop	r_c	18.05(8)	0.04(2)	0.005(12)	0.7	250(1)
NLO	2 Loop	T_c	18.34(6)	0.094(3)	-0.0195(8)	1.7	254.3(8)
NLO	2 Loop	σ	17.33(11)	0.097(7)	-0.018(2)	0.38	240(2)
NLO	3 Loop	r_c	18.26(8)	0.04(2)	0.007(12)	0.7	253(1)
NLO	3 Loop	T_c	18.57(6)	0.093(3)	-0.0192(8)	1.8	257.5(8)
NLO	3 Loop	σ	17.6(1)	0.095(7)	018(2)	0.39	243(2)

Plots of other g_{renorm} : T_c

Other g_{renorm} : **Summary**

Requiring:

- $200 MeV \le \Lambda_{\overline{MS}} \le 250 MeV$
- $\bullet d_2^L \le 0.20 \quad (= g_0 \text{ value for } d_2^L)$
- considering g_{renorm} zeroth order fits only leaves g_E and g_{VII} only

Other g_{renorm} : Summary

Requiring:

- $200 MeV \le \Lambda_{\overline{MS}} \le 250 MeV$ ■ $d_2^L \le 0.20$ (= g_0 value for d_2^L)
- **considering** g_{renorm} zeroth order fits only
- leaves g_E and g_{VII} only
- demanding d_2^L is consistent for r_c , T_c and σ leaves g_E only

Other *g*_{*renorm*}**: Summary**

Requiring:

■ $200MeV \le \Lambda_{\overline{MS}} \le 250MeV$ ■ $d_2^L \le 0.20$ (= g_0 value for d_2^L) ■ considering g_{renorm} zeroth order fits only leaves g_E and g_{VII} only ■ demanding d_2^L is consistent for r_c , T_c and σ

leaves g_E only

demanding $\chi^2/dof < 10$

leaves none $\longrightarrow g_{renorm} + (N)LO$

(Old) $\Delta\beta(\beta)$ Plot

CRA hep-lat/9610016

String Tension (and some T_c) data for SU(2), SU(4), SU(6) & SU(8) taken from: Lucini, Teper & Wenger 2003, 2004, 2005 Lucini & Teper 2001 Lucini

& Teper 2006 priv.comm.

String Tension (and some T_c) data for SU(2), SU(4), SU(6) & SU(8) taken from: Lucini, Teper & Wenger 2003, 2004, 2005 Lucini & Teper 2001 Lucini & Teper 2006 priv.comm.

Recall:

$$\Lambda a(g^{2}) = e^{\frac{-1}{2b_{0}g^{2}}} (b_{0}g^{2})^{\frac{-b_{1}}{2b_{0}^{2}}} (1 + \frac{1}{2b_{0}^{3}}(b_{1}^{2} - b_{2}^{L}b_{0})g^{2})$$

$$b_{0} \sim \mathcal{O}(N_{col})$$

$$b_{1} \sim \mathcal{O}(N_{col}^{2})$$

$$b_{2}^{L} \sim \mathcal{O}(N_{col}^{3})$$

String Tension (and some T_c) data for SU(2), SU(4), SU(6) & SU(8) taken from: Lucini, Teper & Wenger 2003, 2004, 2005 Lucini & Teper 2001 Lucini & Teper 2006 priv.comm.

Recall:

$$\begin{split} \Lambda a(g^{2}) &= e^{\frac{-1}{2b_{0}g^{2}}} \left(b_{0}g^{2} \right)^{\frac{-b_{1}}{2b_{0}^{2}}} \left(1 + \frac{1}{2b_{0}^{3}} (b_{1}^{2} - b_{2}^{L}b_{0})g^{2} \right) &\sim e^{-d_{0}\beta} \beta^{d_{1}} \left(1 + \frac{d_{2}^{L}}{\beta} \right) \\ b_{0} &\sim \mathcal{O}(N_{col}) & d_{0} &\sim \mathcal{O}(1/N_{col}) \\ b_{1} &\sim \mathcal{O}(N_{col}^{2}) & d_{1} &\sim \mathcal{O}(1) \neq f(N_{col}) \\ b_{2}^{L} &\sim \mathcal{O}(N_{col}^{3}) & d_{2}^{L} &\sim \mathcal{O}(N_{col}) \end{split}$$

String Tension (and some T_c) data for SU(2), SU(4), SU(6) & SU(8) taken from: Lucini, Teper & Wenger 2003, 2004, 2005 Lucini & Teper 2001 Lucini & Teper 2006 priv.comm.

Recall:

$$\begin{split} \Lambda a(g^{2}) &= e^{\frac{-1}{2b_{0}g^{2}}} \left(b_{0}g^{2} \right)^{\frac{-b_{1}}{2b_{0}^{2}}} \left(1 + \frac{1}{2b_{0}^{3}} (b_{1}^{2} - b_{2}^{L}b_{0})g^{2} \right) &\sim e^{-d_{0}\beta} \beta^{d_{1}} \left(1 + \frac{d_{2}^{L}}{\beta} \right) \\ b_{0} &\sim \mathcal{O}(N_{col}) & d_{0} &\sim \mathcal{O}(1/N_{col}) \\ b_{1} &\sim \mathcal{O}(N_{col}^{2}) & d_{1} &\sim \mathcal{O}(1) \neq f(N_{col}) \\ b_{2}^{L} &\sim \mathcal{O}(N_{col}^{3}) & d_{2}^{L} &\sim \mathcal{O}(N_{col}) \end{split}$$

• expect g_0 -PT to get worse with N_{col} (?)

• typically $\beta \nearrow$ as $N_{col} \nearrow$

SU(4): string tension data + fit

SU(8): string tension data + fit

SU(4) - varying N_{col} in fit

SU(6) - varying N_{col} in fit

3-dimensional view: SU(3)

CRA hep-lat/9610016

Physical Predictions in Continuum Limit

Want lattice prediction of Ω in continuum:

$$\Omega = \lim_{g_0 \to 0} \left[Z^{Ren}(g_0^2) \times \Omega^{\#}(g_0^2) \times a^{-1}(g_0^2) \right]$$

where $\Omega^{\#}$ is lattice (dimless) estimate

Physical Predictions in Continuum Limit

Want lattice prediction of Ω in continuum:

$$\Omega = \lim_{g_0 \to 0} \left[Z^{Ren}(g_0^2) \times \Omega^{\#}(g_0^2) \times a^{-1}(g_0^2) \right]$$

where $\Omega^{\#}$ is lattice (dimless) estimate

Consider case where $Z^{Ren}(g_0^2) \equiv 1$

$$\Omega = \lim_{g_0 \to 0} [\Omega^{\#}(g_0^2) \times a^{-1}(g_0^2)]$$

Want lattice prediction of Ω in continuum:

$$\Omega = \lim_{g_0 \to 0} \left[Z^{Ren}(g_0^2) \times \Omega^{\#}(g_0^2) \times a^{-1}(g_0^2) \right]$$

where $\Omega^{\#}$ is lattice (dimless) estimate

Consider case where $Z^{Ren}(g_0^2) \equiv 1$

$$\Omega = \lim_{g_0 \to 0} [\Omega^{\#}(g_0^2) \times a^{-1}(g_0^2)]$$

 $\square \Omega^{\#}a^{-1} = \Omega^{expt}$, so we can fit $1/\Omega^{\#}$ as we have a^{-1} :

$$\frac{1}{\Omega^{\#}(g_0^2)} = \frac{\lambda_{\Omega}}{f_{PT}(g_0^2)} \times [1 - X\mathcal{O}(a)]$$

giving

$$\Omega = \frac{\Lambda_L}{\lambda_\Omega}$$

LDPT is best way of interpolating the data (i.e. smallest χ^2) - may even be correct!

• "Has" to be this way - people do continuum fits of M(a) = M(0)(1 + Xa) all the time!

Note
$$M(a) \equiv M(a)^{\#} a^{-1} \equiv \frac{M(a)^{\#}}{\Omega(a)^{\#}} \Omega^{expt}$$

"Has" to be this way since different ways of setting scale must have different O(a) dependence LDPT is best way of interpolating the data (i.e. smallest χ^2) - may even be correct!

• "Has" to be this way - people do continuum fits of M(a) = M(0)(1 + Xa) all the time!

Note
$$M(a) \equiv M(a)^{\#} a^{-1} \equiv \frac{M(a)^{\#}}{\Omega(a)^{\#}} \Omega^{expt}$$

"Has" to be this way since different ways of setting scale must have different O(a) dependence

Future Work:

- More simulations for SU(N)
- Apply to Dynamical Simulations ?