
CCS HPC Winter Seminar
High Performance Parallel Computing 

Technology for Computational Sciences

“Parallel Numerical Algorithm 2”

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences



Contents of Lecture

• Fast Fourier Transform (FFT)
• Cooley-Tukey FFT and parallelization
• Six-Step FFT and parallelization
• Nine-Step FFT and blocking, parallelization

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

2



Fast Fourier Transform (FFT)
• The fast Fourier transform (FFT) is an algorithm for 

computing the discrete Fourier transform (DFT).
• Example applications in the scientific field

– Solution of partial differential equations
– Convolution, correlation calculations
– Density function theory in first-principles calculations

• Example applications in the engineering field
– Spectrum analyzers
– CT scanners, MRI, and other image processing
– With the OFDM (orthogonal frequency multiplex 

modulation) used in digital terrestrial television 
broadcasting and wireless LAN, FFTs are used in 
modulation/demodulation processing.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

3



Discrete Fourier Transform (DFT)

• Discrete Fourier transform (DFT) is 
given by

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

4

𝑦𝑦 𝑘𝑘 = �
𝑗𝑗=0

𝑛𝑛−1

𝑥𝑥(𝑗𝑗)𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗

0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1, 𝜔𝜔𝑛𝑛 = 𝑒𝑒−2𝜋𝜋𝑖𝑖/𝑛𝑛



Matrix-based DFT Formulation (1/4)

• When 𝑛𝑛 = 4, a DFT can be computed as 
follows:

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

5

𝑦𝑦 0 = 𝑥𝑥 0 𝜔𝜔0 + 𝑥𝑥 1 𝜔𝜔0 + 𝑥𝑥 2 𝜔𝜔0 + 𝑥𝑥 3 𝜔𝜔0

𝑦𝑦 1 = 𝑥𝑥 0 𝜔𝜔0 + 𝑥𝑥 1 𝜔𝜔1 + 𝑥𝑥 2 𝜔𝜔2 + 𝑥𝑥 3 𝜔𝜔3

𝑦𝑦 2 = 𝑥𝑥 0 𝜔𝜔0 + 𝑥𝑥 1 𝜔𝜔2 + 𝑥𝑥 2 𝜔𝜔4 + 𝑥𝑥 3 𝜔𝜔6

𝑦𝑦 3 = 𝑥𝑥 0 𝜔𝜔0 + 𝑥𝑥 1 𝜔𝜔3 + 𝑥𝑥 2 𝜔𝜔6 + 𝑥𝑥 3 𝜔𝜔9



Matrix-based DFT Formulation (2/4)
• Can be expressed more simply when a 

matrix is used.

• Requires 𝑛𝑛2 complex multiplications and
𝑛𝑛(𝑛𝑛 − 1) complex additions.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

6

𝑦𝑦 0
𝑦𝑦(1)
𝑦𝑦(2)
𝑦𝑦 3

=
𝜔𝜔0 𝜔𝜔0 𝜔𝜔0 𝜔𝜔0

𝜔𝜔0 𝜔𝜔1 𝜔𝜔2 𝜔𝜔3

𝜔𝜔0 𝜔𝜔2 𝜔𝜔4 𝜔𝜔6

𝜔𝜔0 𝜔𝜔3 𝜔𝜔6 𝜔𝜔9

𝑥𝑥 0
𝑥𝑥(1)
𝑥𝑥(2)
𝑥𝑥 3



Matrix-based DFT Formulation (3/4)

• Using the relation 𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗 = 𝜔𝜔𝑛𝑛

𝑗𝑗𝑗𝑗 mod 𝑛𝑛, can be 
written as follows:

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

7

𝑦𝑦 0
𝑦𝑦(1)
𝑦𝑦(2)
𝑦𝑦 3

=

1 1 1 1
1 𝜔𝜔1 𝜔𝜔2 𝜔𝜔3

1 𝜔𝜔2 𝜔𝜔0 𝜔𝜔2

1 𝜔𝜔3 𝜔𝜔2 𝜔𝜔1

𝑥𝑥 0
𝑥𝑥(1)
𝑥𝑥(2)
𝑥𝑥 3



Matrix-based DFT Formulation (4/4)
• Decomposition of the matrix allows the number of 

multiplications to be reduced.

Performing this recursively, the amount of 
calculations can be reduced to 𝑂𝑂(𝑛𝑛 log𝑛𝑛).
(The number of data 𝑛𝑛 must be a composite 

number.)
2023/2/21 High Performance Parallel Computing Technology 

for Computational Sciences
8

𝑦𝑦 0
𝑦𝑦(2)
𝑦𝑦(1)
𝑦𝑦 3

=
1 𝜔𝜔0 0 0
1 𝜔𝜔2 0 0
0 0 1 𝜔𝜔1

0 0 1 𝜔𝜔3

1 0 𝜔𝜔0 0
0 1 0 𝜔𝜔0

1 0 𝜔𝜔2 0
0 1 0 𝜔𝜔2

𝑥𝑥(0)
𝑥𝑥(1)
𝑥𝑥(2)
𝑥𝑥(3)



Comparison of the Amount of Operations 
Needed for Calculating DFTs and FFTs

• Number of real operations for DFTs
𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 = 8𝑛𝑛2 − 2𝑛𝑛

• Number of real operations for FFTs
(When 𝑛𝑛 is a power of two)

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = 5𝑛𝑛 log2 𝑛𝑛

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

9



Comparison of the Amount of Operations 
Needed for Calculating DFTs and FFTs

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

1.E+07

0 1 2 3 4 5 6 7 8 9 10

log_2 n

N
u
m

b
e
r 

o
f 

R
e
a
l 
A

ri
th

m
e
ti

c
O

p
e
ra

ti
o
n
s

DFT

FFT

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

10

8386560

51200



Butterfly Operation

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

11

𝑥𝑥(0)

𝑥𝑥(1)

𝑦𝑦(0)

𝑦𝑦(1)

𝑦𝑦 0 = 𝑥𝑥 0 + 𝑥𝑥(1)
𝑦𝑦 1 = 𝜔𝜔 𝑥𝑥 0 + 𝑥𝑥 1



Cooley-Tukey FFT Signal Flow 
Diagram

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

12

𝑥𝑥(0)
𝑥𝑥(1)
𝑥𝑥(2)
𝑥𝑥(3)
𝑥𝑥(4)
𝑥𝑥(5)
𝑥𝑥(6)
𝑥𝑥(7)

𝑦𝑦(0)
𝑦𝑦(4)
𝑦𝑦(2)
𝑦𝑦(6)
𝑦𝑦(1)
𝑦𝑦(5)
𝑦𝑦(3)
𝑦𝑦(7)

𝜔𝜔0

𝜔𝜔1

𝜔𝜔2

𝜔𝜔3

𝜔𝜔0

𝜔𝜔2

𝜔𝜔0

𝜔𝜔2

𝜔𝜔0

𝜔𝜔0

𝜔𝜔0

𝜔𝜔0



Example of FFT Kernel
SUBROUTINE FFT2(A,B,W,M,L)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(2,M,L,*),B(2,M,2,*),W(2,*)

C
DO J=1,L

WR=W(1,J)
WI=W(2,J)
DO I=1,M

B(1,I,1,J)=A(1,I,J,1)+A(1,I,J,2)
B(2,I,1,J)=A(2,I,J,1)+A(2,I,J,2)
B(1,I,2,J)=WR*(A(1,I,J,1)-A(1,I,J,2))-WI*(A(2,I,J,1)-A(2,I,J,2))
B(2,I,2,J)=WR*(A(2,I,J,1)-A(2,I,J,2))+WI*(A(1,I,J,1)-A(1,I,J,2))

END DO
END DO
RETURN
END

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

13



Parallelization of Cooley-Tukey FFT

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

14

𝑥𝑥(0)
𝑥𝑥(1)
𝑥𝑥(2)
𝑥𝑥(3)
𝑥𝑥(4)
𝑥𝑥(5)
𝑥𝑥(6)
𝑥𝑥(7)

𝑦𝑦(0)
𝑦𝑦(4)
𝑦𝑦(2)
𝑦𝑦(6)
𝑦𝑦(1)
𝑦𝑦(5)
𝑦𝑦(3)
𝑦𝑦(7)

𝑃𝑃0

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3



Amount of Communication with 
Parallel Cooley-Tukey FFT

• If 𝑛𝑛 is the number of nodes in a parallel 
Cooley-Tukey FFT, log2 𝑃𝑃 stage 
communication is required.

• Because ( ⁄𝑛𝑛 𝑃𝑃) double-precision complex 
number data is communicated (MPI_Send, 
MPI_Recv) at each stage, the total amount 
of communication is as follows:

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

15

(bytes)𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
16𝑛𝑛
𝑃𝑃

log2 𝑃𝑃



FFT Algorithm for 𝑛𝑛 = 𝑛𝑛1𝑛𝑛2
• Given by 𝑛𝑛 = 𝑛𝑛1𝑛𝑛2

𝑗𝑗 = 𝑗𝑗1 + 𝑗𝑗2𝑛𝑛1, 𝑗𝑗1 = 0, 1, … ,𝑛𝑛1 − 1, 𝑗𝑗2 = 0, 1, … ,𝑛𝑛2 − 1
𝑘𝑘 = 𝑘𝑘2 + 𝑘𝑘1𝑛𝑛2, 𝑘𝑘1= 0, 1, … ,𝑛𝑛1 − 1,𝑘𝑘2 = 0, 1, … ,𝑛𝑛2 − 1

• Using the above expression, the DFT formulation can 
be rewritten as follows:

𝑦𝑦 𝑘𝑘2,𝑘𝑘1 = �
𝑗𝑗1=0

𝑛𝑛1−1

�
𝑗𝑗2=0

𝑛𝑛2−1

𝑥𝑥(𝑗𝑗1, 𝑗𝑗2)𝜔𝜔𝑛𝑛2
𝑗𝑗2𝑘𝑘2 𝜔𝜔𝑛𝑛1𝑛𝑛2

𝑗𝑗1𝑘𝑘2 𝜔𝜔𝑛𝑛1
𝑗𝑗1𝑘𝑘1

• An 𝑛𝑛-point FFT decomposes into an 𝑛𝑛1-point FFT 
and an 𝑛𝑛2-point FFT.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

16



Six-Step FFT Algorithm

1. Matrix transposition
2. 𝑛𝑛1 individual 𝑛𝑛2-point multicolumn FFT

3. Twiddle factor (𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2 ) multiplication

4. Matrix transposition
5. 𝑛𝑛2 individual 𝑛𝑛1-point multicolumn FFT
6. Matrix transposition

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

17



Six-Step FFT Algorithm

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

18

𝑛𝑛 individual 

𝑛𝑛-point FFTs

Transpose

Transpose
Transpose

𝑛𝑛1

𝑛𝑛1

𝑛𝑛1

𝑛𝑛1𝑛𝑛2

𝑛𝑛2

𝑛𝑛2

𝑛𝑛2



Six-Step FFT Program Example
SUBROUTINE FFT(A,B,W,N1,N2)
COMPLEX*16 A(*),B(*),W(*)

C
CALL TRANS(A,B,N1,N2)                        Matrix transposition
DO J=1,N1

CALL FFT2(B((J-1)*N2+1),N2)            N1 individual N2-point multicolumn FFT
END DO
DO I=1,N1*N2

B(I)=B(I)*W(I)                                       Twiddle factor (W) multiplication
END DO
CALL TRANS(B,A,N2,N1)                        Matrix transposition
DO J=1,N2

CALL FFT2(A((J-1)*N1+1),N1)             N2 individual N1-point multicolumn FFT
END DO
CALL TRANS(A,B,N1,N2)                        Matrix transposition
RETURN
END

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

19



Method for Distribution an Array
• When using MPI for parallelization, memory can be 

conserved if the array is divided at each node.
• Block distribution

– Contiguous areas are divided by the number of nodes.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

20

Block distribution divided at 
each column

Block distribution divided at 
each row

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3



Matrix Transposition Using All-to-
All Communication (MPI_Alltoall)

0
1

8
9

16
17

24
25

2
3

10
11

18
19

26
27

4
5

12
13

20
21

28
29

6
7

14
15

22
23

30
31

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

21

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0   1 2   3 4   5 6   7
8   9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

All-to-
All 
Comm.

Local 
Transposition

P0  P1  P2 P3 P0  P1  P2 P3 P0      P1     P2      P3



Parallel Six-Step FFT Algorithm

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

22

Transpose 
with All-to-
All comm.

Transpose 
with All-to-
All comm.

Transpose 
with All-to-
All comm.

𝑛𝑛1

𝑛𝑛1

𝑛𝑛1

𝑛𝑛2

𝑛𝑛2

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3



Parallel Six-Step FFT Program Example
SUBROUTINE PARAFFT(A,B,W,N1,N2,NPU)
COMPLEX*16 A(*),B(*),W(*)

C
CALL PTRANS(A,B,N1,N2,NPU)            Global matrix transposition using MPI_ALLTOALL
DO J=1,N1/NPU

CALL FFT2(B((J-1)*N2+1),N2)          (N1/NPU) individual N2-point multicolumn FFT
END DO
DO I=1,(N1*N2)/NPU

B(I)=B(I)*W(I)                                     Twiddle factor (W) multiplication
END DO
CALL PTRANS(B,A,N2,N1,NPU)            Global matrix transposition using MPI_ALLTOALL
DO J=1,N2/NPU

CALL FFT2(A((J-1)*N1+1),N1)           (N2/NPU) individual N1-point multicolumn FFT
END DO
CALL PTRANS(A,B,N1,N2,NPU)            Global matrix transposition using MPI_ALLTOALL
RETURN
END

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

23



Amount of Communication of 
Parallel Six-Step FFT

• If 𝑃𝑃 is the number of nodes in a parallel six-
step FFT, all-to-all communication is 
required three times.

• With all-to-all communication, because each 
node sends an ( ⁄𝑛𝑛 𝑃𝑃2) double-precision 
complex data to 𝑃𝑃 − 1 nodes, the total 
amount of communication is as follows:

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

24

(Bytes)𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 3 � (𝑃𝑃 − 1) �
16𝑛𝑛
𝑃𝑃2



Comparison of Amount of 
Communication with Parallel Cooley-
Tukey FFT and Parallel Six-Step FFT

• Amount of communication with parallel Cooley-
Tukey FFT

• Amount of communication with parallel six-step FFT

• Of these two methods, when 𝑃𝑃 > 8, the parallel six-
step FFT will have the lower amount of 
communication.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

25

𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
16𝑛𝑛
𝑃𝑃

log2 𝑃𝑃

𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 3 � (𝑃𝑃 − 1) �
16𝑛𝑛
𝑃𝑃2



Problems with the Six-Step FFT
• In a multicolumn FFT, when 𝑛𝑛-point each 

column FFT exceeds the cache size, the 
performance will decrease significantly.

• A distributed-memory parallel computer, 
when processing a large-size FFT (224 points 
or more, for example), will be unable to 
achieve high performance.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

26



3-D Formulation

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

27

• For very large FFTs, we should switch a
3-D formulation.

• If 𝑛𝑛 has factors 𝑛𝑛1, 𝑛𝑛2 and 𝑛𝑛3 then

𝑦𝑦 𝑘𝑘3, 𝑘𝑘2, 𝑘𝑘1 = �
𝑗𝑗1=0

𝑛𝑛1−1

�
𝑗𝑗2=0

𝑛𝑛2−1

�
𝑗𝑗3=0

𝑛𝑛3−1

𝑥𝑥(𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3)

𝜔𝜔𝑛𝑛3
𝑗𝑗3𝑘𝑘3𝜔𝜔𝑛𝑛2𝑛𝑛3

𝑗𝑗2𝑘𝑘3 𝜔𝜔𝑛𝑛2
𝑗𝑗2𝑘𝑘2𝜔𝜔𝑛𝑛

𝑗𝑗1𝑘𝑘3𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2 𝜔𝜔𝑛𝑛1

𝑗𝑗1𝑘𝑘1



Nine-Step FFT Algorithm
1. Matrix transposition
2. 𝑛𝑛1𝑛𝑛2 individual 𝑛𝑛3-point multicolumn FFT

3. Twiddle factor (𝜔𝜔𝑛𝑛2𝑛𝑛3
𝑗𝑗2𝑘𝑘3 ) multiplication

4. Matrix transposition
5. 𝑛𝑛1𝑛𝑛3 individual 𝑛𝑛2-point multicolumn FFT

6. Twiddle factor (𝜔𝜔𝑛𝑛
𝑗𝑗1𝑘𝑘3𝜔𝜔𝑛𝑛1𝑛𝑛2

𝑗𝑗1𝑘𝑘2 ) multiplication
7. Matrix transposition
8. 𝑛𝑛2𝑛𝑛3 individual 𝑛𝑛1-point multicolumn FFT
9. Matrix transposition

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

28



Nine-Step FFT Algorithm

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

29

Transpose

Transpose

Transpose
Transpose

𝑛𝑛2/3 individual

𝑛𝑛1/3 -point FFTs

𝑛𝑛1 𝑛𝑛3

𝑛𝑛2

𝑛𝑛1𝑛𝑛3

𝑛𝑛2𝑛𝑛3

𝑛𝑛2𝑛𝑛1

𝑛𝑛1𝑛𝑛2

𝑛𝑛1𝑛𝑛3

𝑛𝑛2𝑛𝑛3



Block Nine-Step FFT Algorithm

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

30

Partial 
Transpose

Partial 
Transpose

Partial 
Transpose

Partial 
Transpose

Transpose

𝑛𝑛1

𝑛𝑛2𝑛𝑛3 𝑛𝑛𝐵𝐵

𝑛𝑛3

𝑛𝑛2

𝑛𝑛2𝑛𝑛1

𝑛𝑛3 𝑛𝑛1

𝑛𝑛2𝑛𝑛3

𝑛𝑛1𝑛𝑛3

𝑛𝑛2

𝑛𝑛𝐵𝐵



In-Cache FFT Algorithm
• In a multicolumn FFT, the following can be 

conceived of as in-cache FFTs, whereby each 
column FFT is placed in the cache.
– Cooley-Tukey algorithm (bit-reversal permutation is 

needed)
– Stockham algorithm (bit-reversal permutation is 

unnecessary)
• The higher radices are more efficient in terms of 

both memory and floating-point operations.
• In view of the high ratio of floating-point instructions 

to memory operations, the radix-8 FFT is more 
advantageous than the radix-4 FFT.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

31



Real Inner-Loop Operations for 
Radix-2, 4 and 8 FFT Kernels

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

32

Radix-2 Radix-4 Radix-8
Loads and Stores 8 16 32

Multiplications 4 12 32
Additions 6 22 66

Total floating-point 
operations (𝑛𝑛 log2 𝑛𝑛)

5 4.25 4.083

Floating-point instructions 10 34 98
Floating-point / memory 

ratio
1.25 2.125 3.063



2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

33

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

n
 l
o
g 

n

FP Instructions Loads and stores

Number of Instructions

Number of Instructions for
FFTs

radix-2

radix-4

radix-8



Blocking of a Nine-Step FFT
• Data in the cache, having been used for matrix 

transposition, can also be used with the 
multicolumn FFTs, thereby increasing the 
reusability of data in the cache.

• Once data from the main memory has been loaded 
into the cache, have it remain in cache as much as 
possible.

• Reuse data in the cache as much as possible, and 
when that data is truly no longer needed, write it 
back to the main memory.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

34



Parallel Nine-Step FFT Algorithm

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

35

Transpose

Transpose

Transpose

All-to-All comm.

𝑛𝑛1

𝑛𝑛2

𝑛𝑛3

𝑛𝑛3

𝑛𝑛2

𝑛𝑛1

𝑛𝑛2𝑛𝑛3

𝑛𝑛2𝑛𝑛1 𝑛𝑛2𝑛𝑛3

𝑛𝑛2𝑛𝑛3

𝑛𝑛𝐵𝐵

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑛𝑛𝐵𝐵



Advantages of a Block Nine-Step FFT
• With an ordinary FFT algorithm such as the 

Stockham FFT
– Number of operations: 5𝑛𝑛 log2 𝑛𝑛
– Number of main memory accesses: 4𝑛𝑛 log2 𝑛𝑛

• With a block nine-step FFT
– Number of operations: 5𝑛𝑛 log2 𝑛𝑛
– Number of main memory accesses: Ideally 12𝑛𝑛

• Because a portion of the nine-step FFT performs
𝑛𝑛1/3-point FFT blocking, the proposed block nine-

step FFT can be called a “double blocking” algorithm.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

36



2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

37

Performance of parallel 1-D FFT
（dual-core Xeon 2.4GHz PC cluster, N = 2^23xP)

0

1

2

3

4

1 2 4 8 16 32

Number of cores

G
F
L
O

P
S

FFTE 4.0

FFTE 4.0
with AT

FFTW
3.2alpha3



2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

38

Breakdown of parallel 1-D FFT
(dual-core Xeon 2.4GHz PC cluster, N=2^23xP)

0

2

4

6

8

10

12

14

1 2 4 8 16 32

Number of cores

T
im

e
 (

s
e
c
)

Computation

Communication



Examples of Parallel FFT Libraries
• Commercial parallel numeric computation libraries

– Intel Cluster MKL (Math Kernel Library)
• OpenMP version and MPI version can be used.

– AMD ACML (AMD Core Math Library)
• OpenMP version can be used.

• Open source parallel FFT libraries
– FFTW (http://www.fftw.org/)

• OpenMP version and MPI version can be used.
– FFTE (http://www.ffte.jp/)

• OpenMP version, MPI version, and OpenMP+MPI 
version can be used.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

39

http://www.fftw.org/
http://www.ffte.jp/


Summary
• The FFT (fast Fourier transform) has been 

introduced as a parallel numeric computing 
algorithm.

• The key is how to distribute the problem area.
– Block distribution, cyclic distribution, block-cyclic 

distribution
• With a parallel FFT, because the communication 

part is mainly all-to-all communication, 
parallelization is relatively easy.

• Not only it is important to reduce the amount of 
communication, but the use of blocking, etc., is 
also important to localize the memory accesses.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

40



Problem 7
• Develop the following programs in arbitrary 

programming languages:
(1) Discrete Fourier transform (DFT)
(2) Fast Fourier transform (FFT)

• Then, measure the execution time of a 65536-
point double-complex DFT on any of your available 
PCs.

• Submit the source codes and performance results.

2023/2/21 High Performance Parallel Computing Technology 
for Computational Sciences

41


	CCS HPC Winter Seminar�High Performance Parallel Computing Technology for Computational Sciences��“Parallel Numerical Algorithm 2”
	Contents of Lecture
	Fast Fourier Transform (FFT)
	Discrete Fourier Transform (DFT)
	Matrix-based DFT Formulation (1/4)
	Matrix-based DFT Formulation (2/4)
	Matrix-based DFT Formulation (3/4)
	Matrix-based DFT Formulation (4/4)
	Comparison of the Amount of Operations Needed for Calculating DFTs and FFTs
	Comparison of the Amount of Operations Needed for Calculating DFTs and FFTs
	Butterfly Operation
	Cooley-Tukey FFT Signal Flow Diagram
	Example of FFT Kernel
	Parallelization of Cooley-Tukey FFT
	Amount of Communication with Parallel Cooley-Tukey FFT
	FFT Algorithm for 𝑛= 𝑛 1  𝑛 2 
	Six-Step FFT Algorithm
	Six-Step FFT Algorithm
	Six-Step FFT Program Example
	Method for Distribution an Array
	Matrix Transposition Using All-to-All Communication (MPI_Alltoall)
	Parallel Six-Step FFT Algorithm
	Parallel Six-Step FFT Program Example
	Amount of Communication of Parallel Six-Step FFT
	Comparison of Amount of Communication with Parallel Cooley-Tukey FFT and Parallel Six-Step FFT
	Problems with the Six-Step FFT
	3-D Formulation
	Nine-Step FFT Algorithm
	Nine-Step FFT Algorithm
	Block Nine-Step FFT Algorithm
	In-Cache FFT Algorithm
	Real Inner-Loop Operations for Radix-2, 4 and 8 FFT Kernels
	スライド番号 33
	Blocking of a Nine-Step FFT
	Parallel Nine-Step FFT Algorithm
	Advantages of a Block Nine-Step FFT
	スライド番号 37
	スライド番号 38
	Examples of Parallel FFT Libraries
	Summary
	Problem 7

