CCS HPC Winter Seminar High Performance Parallel Computing Technology for Computational Sciences

"Parallel Numerical Algorithm 2"

Daisuke Takahashi
Center for Computational Sciences
University of Tsukuba

Contents of Lecture

- Fast Fourier Transform (FFT)
- Cooley-Tukey FFT and parallelization
- Six-Step FFT and parallelization
- Nine-Step FFT and blocking, parallelization

Fast Fourier Transform (FFT)

- The fast Fourier transform (FFT) is an algorithm for computing the discrete Fourier transform (DFT).
- Example applications in the scientific field
- Solution of partial differential equations
- Convolution, correlation calculations
- Density function theory in first-principles calculations
- Example applications in the engineering field
- Spectrum analyzers
- CT scanners, MRI, and other image processing
- With the OFDM (orthogonal frequency multiplex modulation) used in digital terrestrial television broadcasting and wireless LAN, FFTs are used in modulation/demodulation processing.

Discrete Fourier Transform (DFT)

- Discrete Fourier transform (DFT) is given by

$$
\begin{aligned}
& y(k)=\sum_{j=0}^{n-1} x(j) \omega_{n}^{j k} \\
& 0 \leq k \leq n-1, \omega_{n}=e^{-2 \pi i / n}
\end{aligned}
$$

Matrix-based DFT Formulation (1/4)

- When $n=4$, a DFT can be computed as follows:

$$
\begin{aligned}
& y(0)=x(0) \omega^{0}+x(1) \omega^{0}+x(2) \omega^{0}+x(3) \omega^{0} \\
& y(1)=x(0) \omega^{0}+x(1) \omega^{1}+x(2) \omega^{2}+x(3) \omega^{3} \\
& y(2)=x(0) \omega^{0}+x(1) \omega^{2}+x(2) \omega^{4}+x(3) \omega^{6} \\
& y(3)=x(0) \omega^{0}+x(1) \omega^{3}+x(2) \omega^{6}+x(3) \omega^{9}
\end{aligned}
$$

Matrix-based DFT Formulation (2/4)

- Can be expressed more simply when a matrix is used.

$$
\left[\begin{array}{l}
y(0) \\
y(1) \\
y(2) \\
y(3)
\end{array}\right]=\left[\begin{array}{cccc}
\omega^{0} & \omega^{0} & \omega^{0} & \omega^{0} \\
\omega^{0} & \omega^{1} & \omega^{2} & \omega^{3} \\
\omega^{0} & \omega^{2} & \omega^{4} & \omega^{6} \\
\omega^{0} & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right]\left[\begin{array}{l}
x(0) \\
x(1) \\
x(2) \\
x(3)
\end{array}\right]
$$

- Requires n^{2} complex multiplications and $n(n-1)$ complex additions.

Matrix-based DFT Formulation (3/4)

- Using the relation $\omega_{n}^{j k}=\omega_{n}^{j k \bmod n}$, can be written as follows:

$$
\left[\begin{array}{l}
y(0) \\
y(1) \\
y(2) \\
y(3)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega^{1} & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{0} & \omega^{2} \\
1 & \omega^{3} & \omega^{2} & \omega^{1}
\end{array}\right]\left[\begin{array}{l}
x(0) \\
x(1) \\
x(2) \\
x(3)
\end{array}\right]
$$

Matrix-based DFT Formulation (4/4)

- Decomposition of the matrix allows the number of multiplications to be reduced.
$\left[\begin{array}{l}y(0) \\ y(2) \\ y(1) \\ y(3)\end{array}\right]=\left[\begin{array}{cccc}1 & \omega^{0} & 0 & 0 \\ 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & \omega^{1} \\ 0 & 0 & 1 & \omega^{3}\end{array}\right]\left[\begin{array}{cccc}1 & 0 & \omega^{0} & 0 \\ 0 & 1 & 0 & \omega^{0} \\ 1 & 0 & \omega^{2} & 0 \\ 0 & 1 & 0 & \omega^{2}\end{array}\right]\left[\begin{array}{l}x(0) \\ x(1) \\ x(2) \\ x(3)\end{array}\right]$

Performing this recursively, the amount of calculations can be reduced to $O(n \log n)$. (The number of data n must be a composite number.)

Comparison of the Amount of Operations Needed for Calculating DFTs and FFTs

- Number of real operations for DFTs

$$
T_{D F T}=8 n^{2}-2 n
$$

- Number of real operations for FFTs (When n is a power of two)

$$
T_{F F T}=5 n \log _{2} n
$$

Comparison of the Amount of Operations Needed for Calculating DFTs and FFTs

Butterfly Operation

$$
\begin{aligned}
& y(0)=x(0)+x(1) \\
& y(1)=\omega\{x(0)+x(1)\}
\end{aligned}
$$

Cooley-Tukey FFT Signal Flow

 Diagram

Example of FFT Kernel

SUBROUTINE FFT2(A,B,W,M,L)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(2,M,L,*),B(2,M,2,*),W(2,*)
C
DO J=1,L

$$
\mathrm{WR}=\mathrm{W}(1, \mathrm{~J})
$$

$$
\mathrm{WI}=\mathrm{W}(2, \mathrm{~J})
$$

DO I=1,M

$$
\mathrm{B}(1, \mathrm{I}, 1, \mathrm{~J})=\mathrm{A}(1, \mathrm{I}, \mathrm{~J}, 1)+\mathrm{A}(1, \mathrm{I}, \mathrm{~J}, 2)
$$

$$
B(2, I, 1, J)=A(2, I, J, 1)+A(2, I, J, 2)
$$

$$
\mathrm{B}(1, \mathrm{I}, 2, \mathrm{~J})=\mathrm{WR}^{*}(\mathrm{~A}(1, \mathrm{I}, \mathrm{~J}, 1)-\mathrm{A}(1, \mathrm{I}, \mathrm{~J}, 2))-\mathrm{WI}(\mathrm{~A}(2, \mathrm{I}, \mathrm{~J}, 1)-\mathrm{A}(2, \mathrm{I}, \mathrm{~J}, 2))
$$

$$
B(2, I, 2, J)=W R^{*}(A(2, I, J, 1)-A(2, I, J, 2))+W I^{*}(A(1, I, J, 1)-A(1, I, J, 2))
$$

END DO
END DO
RETURN
END
2023/2/21

Parallelization of Cooley-Tukey FFT

Amount of Communication with

 Parallel Cooley-Tukey FFT- If n is the number of nodes in a parallel Cooley-Tukey FFT, $\log _{2} P$ stage communication is required.
- Because (n / P) double-precision complex number data is communicated (MPI_Send, MPI_Recv) at each stage, the total amount of communication is as follows:

$$
T_{\text {Cooley-Tukey }}=\frac{16 n}{P} \log _{2} P \text { (bytes) }
$$

FFT Algorithm for $n=n_{1} n_{2}$

- Given by $n=n_{1} n_{2}$
$j=j_{1}+j_{2} n_{1}, j_{1}=0,1, \ldots, n_{1}-1, j_{2}=0,1, \ldots, n_{2}-1$
$k=k_{2}+k_{1} n_{2}, k_{1}=0,1, \ldots, n_{1}-1, k_{2}=0,1, \ldots, n_{2}-1$
- Using the above expression, the DFT formulation can be rewritten as follows:

$$
y\left(k_{2}, k_{1}\right)=\sum_{j_{1}=0}^{n_{1}-1}\left[\sum_{j_{2}=0}^{n_{2}-1} x\left(j_{1}, j_{2}\right) \omega_{n_{2}}^{j_{2} k_{2}} \omega_{n_{1} n_{2}}^{j_{1} k_{2}}\right] \omega_{n_{1}}^{j_{1} k_{1}}
$$

- An n-point FFT decomposes into an n_{1}-point FFT and an n_{2}-point FFT.

Six-Step FFT Algorithm

1. Matrix transposition
2. $\quad n_{1}$ individual n_{2}-point multicolumn FFT
3. Twiddle factor $\left(\omega_{n_{1} n_{2}}^{j_{1} k_{2}}\right)$ multiplication
4. Matrix transposition
5. n_{2} individual n_{1}-point multicolumn FFT
6. Matrix transposition

Six-Step FFT Algorithm

Six-Step FFT Program Example

SUBROUTINE FFT(A,B,W,N1,N2)
COMPLEX*16 A(*),B(*),W(*)
C

CALL TRANS(A,B,N1,N2)
DO J=1,N1
CALL FFT2(B((J-1)*N2+1),N2)
END DO
DO $\mathrm{I}=1, \mathrm{~N} 1 * \mathrm{~N} 2$
$\mathrm{B}(\mathrm{I})=\mathrm{B}(\mathrm{I})^{*} \mathrm{~W}(\mathrm{I})$
END DO
CALL TRANS(B,A,N2,N1)
DO J=1,N2
CALL FFT2(A((J-1)*N1+1),N1)
END DO
CALL TRANS(A,B,N1,N2) RETURN

Matrix transposition

N1 individual N2-point multicolumn FFT

Twiddle factor (W) multiplication

Matrix transposition

N 2 individual N 1 -point multicolumn FFT

Matrix transposition

END

Method for Distribution an Array

- When using MPI for parallelization, memory can be conserved if the array is divided at each node.
- Block distribution
- Contiguous areas are divided by the number of nodes.

Block distribution divided at each column

Block distribution divided at each row

Matrix Transposition Using All-toAll Communication (MPI_Alltoall)

Parallel Six-Step FFT Algorithm

Parallel Six-Step FFT Program Example

SUBROUTINE PARAFFT(A,B,W,N1,N2,NPU)

 COMPLEX*16 A(*),B(*),W(*)```
CALL PTRANS(A,B,N1,N2,NPU)
DO J=1,N1/NPU
 CALL FFT2(B((J-1)*N2+1),N2)
END DO
DO I=1,(N1*N2)/NPU
 B}(\textrm{I})=\textrm{B}(\textrm{I})*W(I
END DO
CALL PTRANS(B,A,N2,N1,NPU)
DO J=1,N2/NPU
 CALL FFT2(A((J-1)*N1+1),N1)
END DO
CALL PTRANS(A,B,N1,N2,NPU)
RETURN
END
```

Global matrix transposition using MPI_ALLTOALL
(N1/NPU) individual N2-point multicolumn FFT

Twiddle factor (W) multiplication
Global matrix transposition using MPI_ALLTOALL
(N2/NPU) individual N1-point multicolumn FFT
Global matrix transposition using MPI_ALLTOALL

## Amount of Communication of Parallel Six-Step FFT

- If $P$ is the number of nodes in a parallel sixstep FFT, all-to-all communication is required three times.
- With all-to-all communication, because each node sends an ( $n / P^{2}$ ) double-precision complex data to $P-1$ nodes, the total amount of communication is as follows:

$$
T_{\text {Six-Step }}=3 \cdot(P-1) \cdot \frac{16 n}{P^{2}}(\text { Bytes })
$$

## Comparison of Amount of

## Communication with Parallel CooleyTukey FFT and Parallel Six-Step FFT

- Amount of communication with parallel CooleyTukey FFT

$$
T_{\text {Cooley-Tukey }}=\frac{16 n}{P} \log _{2} P
$$

- Amount of communication with parallel six-step FFT

$$
T_{\text {Six-Step }}=3 \cdot(P-1) \cdot \frac{16 n}{P^{2}}
$$

- Of these two methods, when $P>8$, the parallel sixstep FFT will have the lower amount of communication.


## Problems with the Six-Step FFT

- In a multicolumn FFT, when $\sqrt{n}$-point each column FFT exceeds the cache size, the performance will decrease significantly.
- A distributed-memory parallel computer, when processing a large-size FFT ( $2^{24}$ points or more, for example), will be unable to achieve high performance.


## 3-D Formulation

- For very large FFTs, we should switch a 3-D formulation.
- If $n$ has factors $n_{1}, n_{2}$ and $n_{3}$ then

$$
y\left(k_{3}, k_{2}, k_{1}\right)=\sum_{\substack{j_{1}=0 \\ \omega_{j} \\ j_{3} k_{3}}}^{\omega_{n_{3}}^{n_{1}-1} \omega_{n_{2} n_{3}}^{j_{2} k_{3}} \omega_{n_{2}}^{n_{2}-1} \sum_{j_{3}=0}^{n_{2} k_{2}} \omega_{n}^{n_{1} k_{3}} \omega_{n_{1} n_{2}}^{n_{3}-1} \omega_{n_{1}}^{j_{1} k_{2}}} x\left(j_{1}, j_{2}, j_{3}\right)
$$

## Nine-Step FFT Algorithm

1. Matrix transposition
2. $n_{1} n_{2}$ individual $n_{3}$-point multicolumn FFT
3. Twiddle factor $\left(\omega_{n_{2} n_{3}}^{j_{2} k_{3}}\right)$ multiplication
4. Matrix transposition
5. $n_{1} n_{3}$ individual $n_{2}$-point multicolumn FFT
6. Twiddle factor $\left(\omega_{n}^{j_{1} k_{3}} \omega_{n_{1} n_{2}}^{j_{1} k_{2}}\right)$ multiplication
7. Matrix transposition
8. $n_{2} n_{3}$ individual $n_{1}$-point multicolumn FFT
9. Matrix transposition

## Nine-Step FFT Algorithm


$n^{2 / 3}$ individual
$n^{1 / 3}$-point FFTs
Transpose
$n_{1} n_{3}$


Transpose
$n_{2} n_{1}$
$n_{3}$
Transpose $\quad n_{2} n_{3}$


## Block Nine-Step FFT Algorithm $n_{2} n_{3}$ Partial



Partial
Transpose



## In-Cache FFT Algorithm

- In a multicolumn FFT, the following can be conceived of as in-cache FFTs, whereby each column FFT is placed in the cache.
- Cooley-Tukey algorithm (bit-reversal permutation is needed)
- Stockham algorithm (bit-reversal permutation is unnecessary)
- The higher radices are more efficient in terms of both memory and floating-point operations.
- In view of the high ratio of floating-point instructions to memory operations, the radix-8 FFT is more advantageous than the radix-4 FFT.


## Real Inner-Loop Operations for Radix-2, 4 and 8 FFT Kernels

|  | Radix-2 | Radix-4 | Radix-8 |
| :---: | :---: | :---: | :---: |
| Loads and Stores | 8 | 16 | 32 |
| Multiplications | 4 | 12 | 32 |
| Additions | 6 | 22 | 66 |
| Total floating-point operations $\left(n \log _{2} n\right)$ | 5 | 4.25 | 4.083 |
| Floating-point instructions | 10 | 34 | 98 |
| Floating-point / memory ratio | 1.25 | 2.125 | 3.063 |
| 202372121 |  |  |  |

## Number of Instructions for FFTs



## Blocking of a Nine-Step FFT

- Data in the cache, having been used for matrix transposition, can also be used with the multicolumn FFTs, thereby increasing the reusability of data in the cache.
- Once data from the main memory has been loaded into the cache, have it remain in cache as much as possible.
- Reuse data in the cache as much as possible, and when that data is truly no longer needed, write it back to the main memory.


## Parallel Nine-Step FFT Algorithm



Transpose $n_{B}$


All-to-All comm.


## Advantages of a Block Nine-Step FFT

- With an ordinary FFT algorithm such as the Stockham FFT
- Number of operations: $5 n \log _{2} n$
- Number of main memory accesses: $4 n \log _{2} n$
- With a block nine-step FFT
- Number of operations: $5 n \log _{2} n$
- Number of main memory accesses: Ideally $12 n$
- Because a portion of the nine-step FFT performs $n^{1 / 3}$-point FFT blocking, the proposed block ninestep FFT can be called a "double blocking" algorithm.

Performance of parallel 1-D FFT (dual-core Xeon 2.4GHz PC cluster, $\mathrm{N}=2^{\wedge} 23 \mathrm{xP}$ )

$\rightarrow$ FFTE 4.0
$\rightarrow$ FFTE 4.0
with AT
-- FFTW
3.2alpha3

Breakdown of parallel 1-D FFT
(dual-core Xeon 2.4 GHz PC cluster, $\mathrm{N}=\mathbf{2}^{\wedge} 23 x \mathrm{x}$ )


## Examples of Parallel FFT Libraries

- Commercial parallel numeric computation libraries
- Intel Cluster MKL (Math Kernel Library)
- OpenMP version and MPI version can be used.
- AMD ACML (AMD Core Math Library)
- OpenMP version can be used.
- Open source parallel FFT libraries
- FFTW (http://www.fftw.org/)
- OpenMP version and MPI version can be used.
- FFTE (http://www.ffte.jp/)
- OpenMP version, MPI version, and OpenMP+MPI version can be used.


## Summary

- The FFT (fast Fourier transform) has been introduced as a parallel numeric computing algorithm.
- The key is how to distribute the problem area.
- Block distribution, cyclic distribution, block-cyclic distribution
- With a parallel FFT, because the communication part is mainly all-to-all communication, parallelization is relatively easy.
- Not only it is important to reduce the amount of communication, but the use of blocking, etc., is also important to localize the memory accesses.


## Problem 7

- Develop the following programs in arbitrary programming languages:
(1) Discrete Fourier transform (DFT)
(2) Fast Fourier transform (FFT)
- Then, measure the execution time of a 65536point double-complex DFT on any of your available PCs.
- Submit the source codes and performance results.

