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Distributed Memory System
• Computer

• called as “Node”
• Network

• High-performance network
• Commodity high-speed network
• or specialized design for 
supercomputers 

• Distributed Memory
• Each node has own memory
• Cannot access memory on 
different node (not same as 
OpenMP）
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Network for Parallel Computing
• Performance is important for parallel computing

• Solving a problem on multiple nodes
• → high frequent communication is required

• Communication reduces computation performance
• Thus, keep communication time small as possible

• High-performance network is used in supercomputers
• For example: Ethernet, InfiniBand
• Network performance is essential for high-performance computing
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Network Elements
• Nodes

• Computers connected to the network
• Cables

• node-to-node or node-to-switch
• Material: copper or optical (Silicon/Glass)
• Copper cable：Low cost, but only for short-range (~5m) comm.
• Optical cable：for long-range comm. (~km), but higher cost

• Switches
• Relay of communication device.
• Used for constructing large network with multiple nodes
• Wide-range of scale. from dozens to thousands of ports.
• Large network consists of multiple switches
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Topology
• Topology is abstract structure of connections in network
• Star and tree with switches are widely used

• All nodes are connected via switches
• Specialized network for HPC may uses Mesh
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Ethernet
• Ethernet

• Most widely used network
• We often call it as “LAN” or “LAN Cable”
• Gigabit Ethernet (1Gbps) is the most popular one

• Ethernet was born in 1980s
• Many variations in the standard
• Speed：1Mbps ~ 100Gbps
• Cable Distance：100m ~ xx km

• High-speed Ethernet is widely used in supercomputers
• 100Gbps, 200Gbps, ...
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InfiniBand
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• InfiniBand (IB)
• One of high-speed networks by NVIDIA (was Mellanox)
• IB supports wide variety size of network

• from few nodes to more than 10,000 nodes
• up to 400 Gbps (IB NDR) is available
• 800 Gbps is planned

Switch Switch

Node Node Node Node

IB network uses Tree topology.
Large network may use multiple
stage network in the tree．
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Inifiniband HCA (Host Card Adaptor)

Optical Cable (5m)
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Bandwidth & Latency
• Bandwidth (Byte/s)

• Amount of data [Byte] transferred in a second
• Latency (s)

• Data transfer time between sender and receiver
• Delay of communication

• If we have network bandwidth of B[B/s] with latency of L[s], 
transfer of N[B] data takes L + N/B [s]
• If we send data successively, L affects only beginning
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Bandwidth & Latency
• Examples

• Transfer of 1GB data takes 10 sec. Find bandwidth of this network.
• 1 [GB] / 10 [s] = 0.1 [GB/s]

• How long does it take to transfer 100MB of data at 5MB/s?
• 100[MB] / 5[MB/s] = 20[s]

• It takes 100ms to send 1 byte data between two nodes (round-trip). Find 
latency of this network. Ignore the time for sending data.
• 100[ms] / 2 = 50[ms] 
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Overhead of Communication
• Communication includes overhead of preparation and control

• Cost does not change between short and long communication
• Number of communication should be minimized

• Considering data transfer of A, B, and C, single transfer A+B+C is better 
than separate transfer

13

A B C

A+B+C

Separate

Single



Direct Memory Access (DMA)
• Network cards used in HPC 
can access CPU memory 
directly
• a.k.a. Direct Memory Access 
(DMA)

• CPU is released form data 
transfer for communication
• Optimized data transfer for 
network
• CPU can other computation 
rather than communication
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Asynchronous Communication
• For CPU, communication is time consuming task

• Waiting for communication wastes CPU computation time
• Computation and Computation at time same time

• This is called as “Asynchronous Communication”
• If DMA is supported, async. comm. is zero overhead
• Ideally, communication is overlapped with communication completely.

• However, programming becomes complicated
• Changing code or order of computation may be required
• Must compute data required by communication before other data
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Amdahl's law
• Speed up of parallel computation is dominated by non-parallel 
part
• If 10 times speedup is achieved 100% of program

• 1 / (1 / 10) = x10
• 90％ of program

• 1 / (0.1 + 0.9 / 10) = x5.26
• 80% of program

• 1 / (0.2 + 0.8 / 10) = x3.57
• 50% of program

• 1 / (0.5 + 0.5 / 10) = x1.82
• Assuming infinity speedup...

• 99％→100 times，90%→10 times，50%→2 times
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Amdahl's law
• Ideal : Using n nodes, speed is n times faster 
than 1 node
• Actual：Amdahl's law

• To achieve x100 speedup on 100 nodes, at least 
99% of program must be parallelizable

• Moreover, communication overhead reduces 
performance

• per-node computation is 1/100
• Amount of communication will also be 1/100
• Time of communication will not be 1/100 due to 
overhead

• Research to improve communication 
efficiency is widely studied
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Message Passing Interface (MPI)
• Communication library standard widely used 
in supercomputers
• Many open-source and proprietary 
implementations

• De-facto standard for HPC applications
• MPI is used for sending and receiving data
• also supports communication patterns frequently 
used in scientific computation

• Many MPI implementations
• We can run same applications on multiple systems 
using different MPI implementations

• Large supercomputers often have proprietary 
network
• → system specific and optimized MPI by system 
vendor
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Message Passing Interface (MPI)
• was born in 1992

• Specification：https://www.mpi-forum.org/
• 1994: MPI-1.0 release
• 2009: MPI-2.2 release ，647 pages
• 2015: MPI-3.1 release ，868 pages
• 2021: MPI-4.0 release ，1139 pages
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SPMD
• Single Program Multiple Data

• Run same program
• but computes on different data

• MPI is SPMD
• Run same program on nodes
• program called as “process” in MPI

• 1 process on 1 node
• or N procs. on 1 node

• Describe (what) data transfer 
between processes using MPI
• MPI abstracts “how to transfer”
• We don’t need to care about that

• Processes run independently without 
explicit synchronization using MPI
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OSS MPIs
• OpenMPI

• https://www.open-mpi.org/
• MPICH

• https://www.mpich.org/
• MVAPICH

• https://mvapich.cse.ohio-state.edu/
• Scalable implementation

• from laptops to supercomputers
• from memory to InfiniBand
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Programming Language
• In this class, C is used for explanation
• The MPI standard uses C and Fortran

• Previously, C++ was used but has been discontinued
• Many libraries on other languages

• C++: Boost.MPI
• Python: mpi4py
• Java: OpenMPI
• Go: go-mpi
• Rust: rsmpi
• etc.
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MPI Initialization
• MPI_Init(int*, char***)

• Initializes the MPI library
• Must call before other MPI function calls

• Takes arguments (argc, argv in C) for program
• to handle options for MPI library
• プログラムへの引数を解釈して，MPI向け引数を除去するため

• MPI_Init_thread(int*, char***, int req, int* provided)
• MPI_Init for multithread applications (OpenMP, pthread, etc.)
• req specifies requested level, and provided returns actual level

• major implementations supports MULTIPLE
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MPI_THREAD_SINGLE same as MPI_Init．Multithread is disallowed.

MPI_THREAD_FUNNELED Only thread that called MPI_Init_thread can use MPI.

MPI_THREAD_SERIALIZED Multiple threads can use MPI, however, calling MPI from multiple threads 

simultaneously is disallowed.

MPI_THREAD_MULTIPLE Multiple threads can use MPI without any restriction.



MPI Finalization
• MPI_Finalize()

• terminates the MPI library (successfully)
• Do not call MPI after MPI_Finalize()
• non-MPI program is allowed after MPI_Finalize()

• MPI_Abort(MPI_Comm, int)
• terminates the MPI library with an error

• All processes aborts execution
• big difference from non-MPI functions (exit, abort, etc.)

• Recovery from error is also supported for fault tolerance
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Communicator
• Communicator (MPI_Comm type）

• term representing
“communication group” in MPI

• MPI_COMM_WORLD
• All processes join MPI_COMM_WORLD at default
• Special communicator available at MPI_Init()

• MPI_Comm_rank(MPI_Comm, int*)
• Obtain rank number (0~) of called process
• rank is unique number in the communicator

• MPI_Comm_size(MPI_Comm, int*)
• Obtain how many processes are in the communicator
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Kind of Comms.
1. point-to-point

• Communication between proc. A and proc. B
• Before communication, sender confirms receiver is ready

• “handshake”
• like telephone call (ringtone)

2. collective
• Many procs. join it to accomplish objective of the communication
• sum of array (reduction), data relocation (gather/scatter), transpose of matrix (Alltoall), 
synchronize among procs. (barrier), etc.

• MPI has many kinds of collective comms.
3. one-sided

• Send data from proc. A to proc. B
• Sender does not confirm receiver’s status

• like home delivery service
• Japanese service does not check we are in home or not.

• More effective than point-to-point because of no handshake
• However, program must guarantee OK to be written from other procs 26



point-to-point
• MPI_Send(void const* buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)
• buffer: pointer to data to be sent
• count: number of data (not byte!)
• datatype: data type of data
• dest: destination rank in comm
• tag: tag for matching
• comm: Communicator

• MPI_Recv(void* buf, int count, MPI_Datatype datatype, 
int source, int tag, MPI_Comm comm, MPI_Status* 
status)
• source: source rank in comm. (any is also supported)
• status: result of receiving (length, source rank, etc.) 27



point-to-point
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MPI_Send(rank=1, 
tag=1) MPI_Recv(rank=0, tag=1)

rank=0 rank=1 rank=2

MPI_Recv(dest=ANY, 
tag=1)

MPI_Recv(rank=ANY, 
tag=2)MPI_Recv(rank=0, tag=2)

MPI_Send(rank=2, 
tag=2)

“tag” matches MPI_Send with MPI_Recv.
Data are transferred between MPI_Send and MPI_Recv that are have same tag.



MPI DataType
• DataType

• MPI_INT, MPI_FLOAT, MPI_DOUBLE, etc.
• Specifies what kind of data to communicate

• MPI does not use byte in size
• (# of elements) * (DataType)
• 100 * MPI_INT

• MPI is based on array
• useful for collective communications

• Extended Data Type
• Program defines new data type

• combining basic data types into one
• → for structures and array of structure

• Non-contiguous data transfer
• optimization for transfer a part of array
• allows MPI library to optimize non-contiguous data transfer
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1

1
Ex: Monte carlo
• Based on random numbers
• Consider 1/4 area of a circle (radius=1)
• Plot points randomly in range x=0~1, y=0~1

• Check a point is inside the circle
• Is distance from center less than 1?
• !! + #! < 1 ⟺ !! + #! < 1

• If p points are inside circle, area is approximately !" and ! = 4 !
" .

• Accuracy depends on N. Larger N is better.
• Very easy to implement using MPI

• Split work into procs.
30
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Proc. 1 Proc. 2 Proc. 3 Proc. 4
0 ‒ 24 25 ‒ 49 50 ‒ 74 75 - 99

Proc. 1 (N=100)
0 ‒ 99



31

N=1 N=5

N=1000 N=10000

7849 / 10000 * 4 = 3.1396

0 / 1 * 4 = 0 4 / 5 * 4 = 3.2

779 / 1000 * 4 = 3.116
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#include <mpi.h>

int main(int argc, char** argv) {
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
printf("MPI(rank=%d, size=%d)¥n", mpi_rank, mpi_size);

unsigned long loop = 1000000000lu;
int repeat = 10;

for (int r = 0; r < repeat; r++) {
compute_main(loop / mpi_size);

}

MPI_Finalize();

return 0;
}

Each process computes (loop/mpi_size) points
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void compute_main(unsigned long loop) {
int n_inside = 0;

for (unsigned long i = 0; i < loop; i++) {
double x = random01();
double y = random01();

if (x * x + y * y < 1.0) {
n_inside += 1;

}
}

if (mpi_rank == 0) {
for (int i = 1; i < mpi_size; i++) {

unsigned long temp;
MPI_Recv(&temp, 1, MPI_UNSIGNED_LONG, i, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
n_inside += temp;

}
} else

MPI_Send(&n_inside, 1, MPI_UNSIGNED_LONG, 0, 0, MPI_COMM_WORLD);

if (mpi_rank == 0)
printf("result = %.10f¥n", compute_pi(n_inside, mpi_size * loop))

}

R=1 R=2 R=3

R=0

n_inside

if (my rank is not 0)
send result to rank zero

Rank 0 prints the final result

if (my rank is 0)
Receive other’s result (Rank 1~3)
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result = 3.2000000000
PI = 3.1415926535897 ...

loop = 10
time = 0.000 sec

result = 2.9600000000
PI = 3.1415926535897 ...

loop = 100
time = 0.000 sec

result = 3.1240000000
PI = 3.1415926535897 ...

loop = 1000
time = 0.000 sec

result = 3.1052000000
PI = 3.1415926535897 ...

loop = 10000
time = 0.000 sec

result = 3.1516000000
result = 3.1208000000
result = 3.1612000000
result = 3.1268000000
result = 3.1248000000
result = 3.1432000000
result = 3.1468000000
result = 3.1556000000
result = 3.1244000000
result = 3.1244000000



Collective
• Collective

• performs N-to-N communications
• All procs. in a communicator must be participate
• Sub-communicators API for partial (not WORLD) collective

• Barrier synchronization, Broadcast, Gather, Scatter, Allgather, 
Alltoall, Reduce, Allreduce, ...
• I will explain them in following slides

•Why do we use them?
• Collectives can be composed of sends and recvs
• However, MPI library optimizes them in terms of algorithm and 
communication pattern
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MPI_Barrier
• MPI_Barrier(MPI_Comm comm)

• Synchronize among procs. in comm
• MPI_Barrier guarantees all procs. have 
arrived the call
• exit timing from MPI_Barrier may not be 
same across pros.

• Due to delay of network and noise of 
execusion
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MPI_Barrier()
MPI_Barrier()

MPI_Barrier()
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MPI_Bcast
• MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root, 
MPI_Comm comm)
• Data in buffer at rank=root are sent to other (rank != root) procs.
• Bcast = Broadcast
• Behavior is calling MPI_Send()s for each proc.
• MPI_Bcast allows library to optimize
• For example:

• tree-based algorithms (O(log N))
• Network supported Bcast
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MPI_Gather
• MPI_Gather(void const* sendbuf, int sendcount, 
MPI_Datatype sendtype, void* recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, MPI_Comm comm)
• Gathering data

• data in sendbuf at all procs.
• →
• recvbuf at root proc.
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MPI_Scatter
• MPI_Gather(void const* sendbuf, int sendcount, 
MPI_Datatype sendtype, void* recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, MPI_Comm comm)
• Scattering data

• data in sendbuf at root proc.
• →
• recvbuf at all procs.

• Reverse of MPI_Gather

39

rank=0 rank=1 rank=2 rank=3 rank=4
root

recvbuf

sendbuf



MPI_Alltoall
• MPI_Alltoall(void const* sendbuf, int sendcount, MPI_Datatype sendtype, 
void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)
• Performs to transpose a matrix
• all ranks must communicate with all ranks

• So, this is called as “alltoall”
• Optimizing alltoall is very difficult

• optimization depends on topology of network 
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MPI_Allgather
• MPI_Allgather(void const* sendbuf, int sendcount, 
MPI_Datatype datatype, void* recvbuf, int recvcount, 
MPI_Datatype datatype, MPI_Comm comm)
• Behavior is Gather() then Bcast()

• Typical usage is to gather and to share the result of computation 
• Optimized algorithm is used better than just calling gather and bcast.
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MPI_Reduce / Allreduce
• MPI_Reduce(void const* sendbuf, void* recvbuf, int count, 
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
comm)
• Compute reduction of sendbuf at all procs using op

• recvbufroot = sendbuf0 op sendbuf1 op ... op sendbufN
• Behavior is gathering sendbuf to root and applying op them at root

• MPI uses optimized algorithm, thus this will be O(log N)
• Typical usage is backpropagation in AI learning

• Allreduce = Reduce + Bcast
• Allreduce shares the result of Reduce on all procs.
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1 2 3 4 515 = +

rank=0 rank=1 rank=2 rank=3 rank=4
root

op=MPI_SUMの場合

+ + +



Communication Model (1/3)
• How MPI guarantee communication is competed?
•When sender calls MPI_Send(), data is arrived at receiver?

• You may think “MPI_Send sends data, so yes!”
• → Not guaranteed

• This is very important to write correct program
• Generally, we don’t need to care about it

• Understanding communication model helps you to optimize your program
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Communication Model (2/3)
•When MPI_Send() returns,

• it does not guarantee that data is arrived at receiver
• e.g., for small messages, it just writes data to buffer at sender

• Nothing happens on network
• e.g., data are just arrived at receiver, but still in buffer

• MPI_Recv() is under processing

• MPI does not guarantee completion of communication
• If you want to know, need to check yourself

• Completion of MPI communication function
• → The buffer given to the function is ready to use
• MPI_Send: OK to modify the buffer for further comm./comp.
• MPI_Recv: OK to read from the buffer 44



Communication Model (3/3)
• Most MPI implementations use two kind of protocols for point-to-
point
• Eager

• for short messages
• Sender writes (small) eager buffer at receiver
• MPI_Recv can be delayed

• Handshake
• for large messages
• MPI_Send and MPI_Recv wait each other (handshake)
• and then, transfer the data

• Eager buffer is not used because MPI_Recv know receive buffer given by application
45



Non-blocking
• Non-blocking functions

• Immediately returns when preparation is 
completed

• Do not write/read the buffer after returns
• This allows program to overlap computation 
with communication

• MPI_Request
• ticket for non-blocking communications
• We use this to check if finished later

• MPI_Wait/Waitall/Waitany
• Wait for completion of given requests

• MPI_Waitall/Waitany
• Wait for multiple requests (as array)
• Waitall: all of requests
• Waitany: one of requests at least 46

Comp. Send

Blocking

Comp.
Transfer

Non-Blocking

Isend



Non-blocking Point-to-Point
• Add “I” to non-blocking functions

• MPI_Send → MPI_Isend
• MPI_Recv → MPI_Irecv
• “I” for Immediate or Incomplete
• MPI_Request is added in arguments

• MPI_Isend(void const* buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm, 
MPI_Request* request)
• MPI_Irecv(void* buf, int count, MPI_Datatype datatype, 
int source, int tag, MPI_Comm comm, MPI_Request* 
request)

47



MPI_Isend, Irecv
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MPI_Request r[2];
MPI_Status status[2];

MPI_Isend(sendbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &r[0]);
MPI_Irecv(recvbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &r[1]);

MPI_Wait(&r[0], &s[0]);
MPI_Wait(&r[1], &s[1]);

do_computation();

MPI_Waitall(2, r, status);



Non-blocking Collective
• MPI-3 introduces non-blocking version of collectives
• Skip in this class due to many

• Purpose is same as point-to-point
• Usage is same manner as point-to-point, too

• Ibarrier, Ibcast, Igather, Iscatter, Ireduce, ..., etc.
• Add “I” to non-blocking functions
• MPI_Request is returned to check later

• MPI_Ibarrier(MPI_Comm comm, MPI_Request* request)
• MPI_Ireduce(..., MPI_Comm, MPI_Request*)
• etc.
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Ex: Laplace Equation

• Explicit method of Laplace (2D) equation

• Update values with average of neighbor 4 points
• Use two arrays(old, new)
• Update “new” with values in “old”
• Compute residual to check convergence
• Copy “new” to “old”

• Typical domain decomposition
• Split large computation into small computation on multiple processes 50

並列処理の例（３）：laplace

• Laplace方程式の陽的解法

– 上下左右の4点の平均で、
更新していく

– Oldとnewを用意して直前
の値をコピー

– 典型的な領域分割
– 最後に残差をとる

𝜕2𝑓
𝜕𝑥2

+𝜕2𝑓
𝜕𝑦2

= 0
𝑓 0,−1 + 𝑓 −1,0 + 𝑓 1,0 + 𝑓 0,1 − 4𝑓 0,0 = 0

離散化

*𝑓(−1,0) means 𝑓(𝑥 − ∆𝑥, 𝑦)

𝑓(0,0)𝑛𝑒𝑤 =
1
4

𝑓𝑜𝑙𝑑 0,−1 + 𝑓𝑜𝑙𝑑 −1,0 + 𝑓𝑜𝑙𝑑 1,0 + 𝑓𝑜𝑙𝑑 0,1

discretization



Ex: Laplace Equation

• Decompose 2D domain with 1D block
• Some area requires data on next 
process
• if y-1 or y+1 are out of my domain
• Yellow area in the right figure
• We call the area as “boundary”

• To obtain boundary data on next 
process, we use MPI communication
• P1 sends boundary to P0 and P2
• P2 sends boundary to P1 and P3
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行列分割と隣接通信

• 二次元領域をブロッ
ク分割

• 境界の要素は隣の
プロセスが更新

• 境界データを隣接
プロセスに転送

P0

P1

P2

P3

u[x][y] = 0.25 * (uu[x-1][y] + uu[x+1][y] + uu[x][y-1] + uu[x][y+1])



Exchange Data
• Simple way

• MPI_Send() & MPI_Recv()
• Possibility of blocking by MPI_Send
• MPI_Recv may never be executed

• If and only if MPI_Send is eager, 
MPI_Recv can be executed
• we cannot guarantee this
• depending on implementation and size 
of message

• How to solve
• Use MPI_Sendrecv()

• MPI do send and receive at same time
• Use Non-blocking comms.

• MPI_Isend never blocks
• We can handle multiple comms. 
simultaneously in any order
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MPI_Send()

MPI_Recv()

MPI_Send()

MPI_Recv()

MPI_Isend()

MPI_Irecv()

MPI_Isend()

MPI_Irecv()

MPI_Waitall() MPI_Waitall()



Communicator
• Communicator

• Group of processes
• Target of communication

• Program can create
communicators as needed
• Typical Usage:

• Reorder processes (rank number)
• To split (MPI_Comm_split())
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MPI_COMM_WORLD(N=100)

comm1(N=50) comm2(N=50)

MPI_Comm_split()



Cartesian topology
• API for topology of  Cartesian coordinate
• MPI_Cart_create(MPI_Comm comm_old, int ndims, int const* 
dims, int const* periods, int reorder, MPI_Comm* 
comm_cart)
• Create new MPI_Comm from comm_old

• Split comm_old into ndims dimensions
• dims and periods are array representing size of dimensions and boundary type
• If reorder is true, order of rank will be reordered.

• MPI_Cart_shift(MPI_Comm comm, int direction, int disp, 
int* rank_source, int* rank_dest)
• Obtain neighbor rank on Cartesian topology

• direction is dimension to shift (0 to ndims-1)
• disp is how many ranks to shift

• The results are stored into rank_source and rank_dest
• If result is out of domain, MPI_PROC_NULL will be returned
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-2 +2 direction=0
disp=2
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/*
** Laplace equation with explicit method
**/

#include <math.h>
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

/* square region */
#define XSIZE 256
#define YSIZE 256
#define PI 3.1415927
#define NITER 10000
double u[XSIZE + 2][YSIZE + 2], uu[XSIZE + 2][YSIZE + 2];
double time1, time2;
void lap_solve(MPI_Comm);
int myid, numprocs;
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int xsize;

u and uu are array for computation
u is old and uu is new.

Don’t forget to include mpi.h
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void initialize() {
int x, y;
/* Compute initial values */
for (x = 1; x < XSIZE + 1; x++)

for (y = 1; y < YSIZE + 1; y++)
u[x][y] = sin((x - 1.0) / XSIZE * PI) + cos((y - 1.0) / YSIZE * PI);

/* zero fill on boundaries */
for (x = 0; x < XSIZE + 2; x++) {

u[x][0] = u[x][YSIZE + 1] = 0.0;
uu[x][0] = uu[x][YSIZE + 1] = 0.0;

}

for (y = 0; y < YSIZE + 2; y++) {
u[0][y] = u[XSIZE + 1][y] = 0.0;
uu[0][y] = uu[XSIZE + 1][y] = 0.0;

}
}



57

#define TAG_1 100
#define TAG_2 101
#ifndef FALSE
#define FALSE 0
#endif

void lap_solve(MPI_Comm comm) {
int x, y, k;
double sum;
double t_sum;
int x_start, x_end;
MPI_Request req1, req2;
MPI_Status status1, status2;
MPI_Comm comm1d;
int down, up;
int periods[1] = {FALSE};

/*
* Create one dimensional cartesian topology with
* nonperiodical boundary
*/

MPI_Cart_create(comm, 1, &numprocs, periods, FALSE, &comm1d);
/* calculate process ranks for 'down' and 'up' */
MPI_Cart_shift(comm1d, 0, 1, &down, &up);
x_start = 1 + xsize * myid;
x_end = 1 + xsize * (myid + 1);

Create 1D cartesian topology.
Boundary is not periordical.
ndims=1, dims={numprocs}

Get ranks of up and down process.
MPI_PROC_NULL for boundaries.

My compute range
x_start <= x < x_end

+1

-1down

up
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for (k = 0; k < NITER; k++) {
/* old <- new */
for (x = x_start; x < x_end; x++)

for (y = 1; y < YSIZE + 1; y++) uu[x][y] = u[x][y];

/* recv from down */
MPI_Irecv(&uu[x_start - 1][1], YSIZE, MPI_DOUBLE, down, TAG_1, comm1d, &req1);
/* recv from up */
MPI_Irecv(&uu[x_end][1], YSIZE, MPI_DOUBLE, up, TAG_2, comm1d, &req2);
/* send to down */
MPI_Send(&u[x_start][1], YSIZE, MPI_DOUBLE, down, TAG_2, comm1d);
/* send to up */
MPI_Send(&u[x_end - 1][1], YSIZE, MPI_DOUBLE, up, TAG_1, comm1d);
MPI_Wait(&req1, &status1);
MPI_Wait(&req2, &status2);

/* update */
for (x = x_start; x < x_end; x++)

for (y = 1; y < YSIZE + 1; y++)
u[x][y] = .25 * (uu[x - 1][y] + uu[x + 1][y] + uu[x][y - 1] + uu[x][y + 1]);

}

void lap_solve(MPI_Comm comm) {
....

Exchange
boundary data
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void lap_solve(MPI_Comm comm) {
....

/* check sum */
sum = 0.0;
for (x = x_start; x < x_end; x++)

for (y = 1; y < YSIZE + 1; y++) sum += uu[x][y] - u[x][y];

MPI_Reduce(&sum, &t_sum, 1, MPI_DOUBLE, MPI_SUM, 0, comm1d);

if (myid == 0) {
printf("sum = %g¥n", t_sum);

}

MPI_Comm_free(&comm1d);
}

Compute residual
Use MPI_Reduce for summation



60

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Get_processor_name(processor_name, &namelen);
fprintf(stderr, "Process %d on %s¥n", myid, processor_name);

xsize = XSIZE / numprocs;
if ((XSIZE % numprocs) != 0)

MPI_Abort(MPI_COMM_WORLD, 1);

initialize();

MPI_Barrier(MPI_COMM_WORLD);
time1 = MPI_Wtime();
lap_solve(MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);
time2 = MPI_Wtime();

if (myid == 0) {
printf("time = %g¥n", time2 - time1);

}

MPI_Finalize();
return (0);

}

Main part

Initialize

MPI_Init

MPI_Finalize



One-Sided
• Brief overview of one-sided comm.
• “Window” object is used to represent
memory region for one-sided 
communication
• public copy & private copy
• RMA separate memory model
• Synchronization is required to match data 
between public and private

• RMA unified memory model (since MPI-3)
• public and private are same (not-separate)
• If network supports DMA and MPI supports 
unified, this model is very efficient
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public copy

private copy

RMA Put RMA Get

Store Load

sync. window

(Remote Access)

(Local (CPU) Access)



Report (MPI)
• Improve Laplace program shown in this class.

• Report must contain
• Program code
• Description of improvement

• Where and how did you modify
• What is improved and how is it improved.

• Output of program
• Improve must relate to MPI

• Hints, but not limited to
• Using OpenMP for hybrid parallelization
• Use one-sided communication
• 2D domain decomposition instead of 1D
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