
Japan-Korea HPC Winter School
&

High Performance Parallel Computing
Technology for Computational Sciences

「MPI」
Norihisa Fujita

Center for Computational Sciences, University of Tsukuba

Distributed Memory System
• Computer

• called as “Node”
• Network

• High-performance network
• Commodity high-speed network
• or specialized design for
supercomputers

• Distributed Memory
• Each node has own memory
• Cannot access memory on
different node (not same as
OpenMP）

2

Network

P

M

P

M

P

M

P

M

P: Processor
M: Memory

Computer
(Node)

Network for Parallel Computing
• Performance is important for parallel computing

• Solving a problem on multiple nodes
• → high frequent communication is required

• Communication reduces computation performance
• Thus, keep communication time small as possible

• High-performance network is used in supercomputers
• For example: Ethernet, InfiniBand
• Network performance is essential for high-performance computing

3

Network Elements
• Nodes

• Computers connected to the network
• Cables

• node-to-node or node-to-switch
• Material: copper or optical (Silicon/Glass)
• Copper cable：Low cost, but only for short-range (~5m) comm.
• Optical cable：for long-range comm. (~km), but higher cost

• Switches
• Relay of communication device.
• Used for constructing large network with multiple nodes
• Wide-range of scale. from dozens to thousands of ports.
• Large network consists of multiple switches

4

Topology
• Topology is abstract structure of connections in network
• Star and tree with switches are widely used

• All nodes are connected via switches
• Specialized network for HPC may uses Mesh

5

S

S

S S

Star Tree Mesh

S : Switch

: Node

Ethernet
• Ethernet

• Most widely used network
• We often call it as “LAN” or “LAN Cable”
• Gigabit Ethernet (1Gbps) is the most popular one

• Ethernet was born in 1980s
• Many variations in the standard
• Speed：1Mbps ~ 100Gbps
• Cable Distance：100m ~ xx km

• High-speed Ethernet is widely used in supercomputers
• 100Gbps, 200Gbps, ...

6

7
LAN Ports on Wall

Ethernet Switch and Cable

InfiniBand

8

• InfiniBand (IB)
• One of high-speed networks by NVIDIA (was Mellanox)
• IB supports wide variety size of network

• from few nodes to more than 10,000 nodes
• up to 400 Gbps (IB NDR) is available
• 800 Gbps is planned

Switch Switch

Node Node Node Node

IB network uses Tree topology.
Large network may use multiple
stage network in the tree．

9

Inifiniband HCA (Host Card Adaptor)

Optical Cable (5m)

10

Bandwidth & Latency
• Bandwidth (Byte/s)

• Amount of data [Byte] transferred in a second
• Latency (s)

• Data transfer time between sender and receiver
• Delay of communication

• If we have network bandwidth of B[B/s] with latency of L[s],
transfer of N[B] data takes L + N/B [s]
• If we send data successively, L affects only beginning

11

A B C

A B C
L

送信側

受信側

Bandwidth & Latency
• Examples

• Transfer of 1GB data takes 10 sec. Find bandwidth of this network.
• 1 [GB] / 10 [s] = 0.1 [GB/s]

• How long does it take to transfer 100MB of data at 5MB/s?
• 100[MB] / 5[MB/s] = 20[s]

• It takes 100ms to send 1 byte data between two nodes (round-trip). Find
latency of this network. Ignore the time for sending data.
• 100[ms] / 2 = 50[ms]

12

Overhead of Communication
• Communication includes overhead of preparation and control

• Cost does not change between short and long communication
• Number of communication should be minimized

• Considering data transfer of A, B, and C, single transfer A+B+C is better
than separate transfer

13

A B C

A+B+C

Separate

Single

Direct Memory Access (DMA)
• Network cards used in HPC
can access CPU memory
directly
• a.k.a. Direct Memory Access
(DMA)

• CPU is released form data
transfer for communication
• Optimized data transfer for
network
• CPU can other computation
rather than communication

14

CPU CPU
Memory

Network
Card

（1）

（2）

（3）

CPU CPU
Memory

Network
Card

（2）

（1）

without DMA

with DMA

Asynchronous Communication
• For CPU, communication is time consuming task

• Waiting for communication wastes CPU computation time
• Computation and Computation at time same time

• This is called as “Asynchronous Communication”
• If DMA is supported, async. comm. is zero overhead
• Ideally, communication is overlapped with communication completely.

• However, programming becomes complicated
• Changing code or order of computation may be required
• Must compute data required by communication before other data

15

Computation Comm. Comp.
Comm.

Asynchronous CommunicationSynchronous Communication

Comm.
Prep.

Amdahl's law
• Speed up of parallel computation is dominated by non-parallel
part
• If 10 times speedup is achieved 100% of program

• 1 / (1 / 10) = x10
• 90％ of program

• 1 / (0.1 + 0.9 / 10) = x5.26
• 80% of program

• 1 / (0.2 + 0.8 / 10) = x3.57
• 50% of program

• 1 / (0.5 + 0.5 / 10) = x1.82
• Assuming infinity speedup...

• 99％→100 times，90%→10 times，50%→2 times
16

1.0

0.1

0.5

0.5

0.5

0.05

100% of prog. 50% of prog.

x10

x10

Amdahl's law
• Ideal : Using n nodes, speed is n times faster
than 1 node
• Actual：Amdahl's law

• To achieve x100 speedup on 100 nodes, at least
99% of program must be parallelizable

• Moreover, communication overhead reduces
performance

• per-node computation is 1/100
• Amount of communication will also be 1/100
• Time of communication will not be 1/100 due to
overhead

• Research to improve communication
efficiency is widely studied

17

of nodes

Ti
m
e

Scales on # of nodes

not well scaled...

overhead
increases

Message Passing Interface (MPI)
• Communication library standard widely used
in supercomputers
• Many open-source and proprietary
implementations

• De-facto standard for HPC applications
• MPI is used for sending and receiving data
• also supports communication patterns frequently
used in scientific computation

• Many MPI implementations
• We can run same applications on multiple systems
using different MPI implementations

• Large supercomputers often have proprietary
network
• → system specific and optimized MPI by system
vendor

18

MPI
App.

MPI
App.

MPI for A
+

MPI
App.

MPI for B
+

System A

System B

Message Passing Interface (MPI)
• was born in 1992

• Specification：https://www.mpi-forum.org/
• 1994: MPI-1.0 release
• 2009: MPI-2.2 release ，647 pages
• 2015: MPI-3.1 release ，868 pages
• 2021: MPI-4.0 release ，1139 pages

19

SPMD
• Single Program Multiple Data

• Run same program
• but computes on different data

• MPI is SPMD
• Run same program on nodes
• program called as “process” in MPI

• 1 process on 1 node
• or N procs. on 1 node

• Describe (what) data transfer
between processes using MPI
• MPI abstracts “how to transfer”
• We don’t need to care about that

• Processes run independently without
explicit synchronization using MPI

20

通信網（ネットワーク）

P

M

P

M

P

M

P

M

Prog
ram Prog

ram

Prog
ram Prog

ram

Prog
ram Prog

ram

Prog
ram Prog

ram

MPI

Data
Data

Data
Data

Data
Data

Data
Data

Network

OSS MPIs
• OpenMPI

• https://www.open-mpi.org/
• MPICH

• https://www.mpich.org/
• MVAPICH

• https://mvapich.cse.ohio-state.edu/
• Scalable implementation

• from laptops to supercomputers
• from memory to InfiniBand

21

Wifi

Wired LAN

InfiniBand

in-memory
(inside same node)

Programming Language
• In this class, C is used for explanation
• The MPI standard uses C and Fortran

• Previously, C++ was used but has been discontinued
• Many libraries on other languages

• C++: Boost.MPI
• Python: mpi4py
• Java: OpenMPI
• Go: go-mpi
• Rust: rsmpi
• etc.

22

MPI Initialization
• MPI_Init(int*, char***)

• Initializes the MPI library
• Must call before other MPI function calls

• Takes arguments (argc, argv in C) for program
• to handle options for MPI library
• プログラムへの引数を解釈して，MPI向け引数を除去するため

• MPI_Init_thread(int*, char***, int req, int* provided)
• MPI_Init for multithread applications (OpenMP, pthread, etc.)
• req specifies requested level, and provided returns actual level

• major implementations supports MULTIPLE

23

MPI_THREAD_SINGLE same as MPI_Init．Multithread is disallowed.

MPI_THREAD_FUNNELED Only thread that called MPI_Init_thread can use MPI.

MPI_THREAD_SERIALIZED Multiple threads can use MPI, however, calling MPI from multiple threads

simultaneously is disallowed.

MPI_THREAD_MULTIPLE Multiple threads can use MPI without any restriction.

MPI Finalization
• MPI_Finalize()

• terminates the MPI library (successfully)
• Do not call MPI after MPI_Finalize()
• non-MPI program is allowed after MPI_Finalize()

• MPI_Abort(MPI_Comm, int)
• terminates the MPI library with an error

• All processes aborts execution
• big difference from non-MPI functions (exit, abort, etc.)

• Recovery from error is also supported for fault tolerance

24

Communicator
• Communicator (MPI_Comm type）

• term representing
“communication group” in MPI

• MPI_COMM_WORLD
• All processes join MPI_COMM_WORLD at default
• Special communicator available at MPI_Init()

• MPI_Comm_rank(MPI_Comm, int*)
• Obtain rank number (0~) of called process
• rank is unique number in the communicator

• MPI_Comm_size(MPI_Comm, int*)
• Obtain how many processes are in the communicator

25

Proc. 1 Proc. 2 Proc. N

rank=0 rank=1 rank=N-1

Communicator (size=N)

Kind of Comms.
1. point-to-point

• Communication between proc. A and proc. B
• Before communication, sender confirms receiver is ready

• “handshake”
• like telephone call (ringtone)

2. collective
• Many procs. join it to accomplish objective of the communication
• sum of array (reduction), data relocation (gather/scatter), transpose of matrix (Alltoall),
synchronize among procs. (barrier), etc.

• MPI has many kinds of collective comms.
3. one-sided

• Send data from proc. A to proc. B
• Sender does not confirm receiver’s status

• like home delivery service
• Japanese service does not check we are in home or not.

• More effective than point-to-point because of no handshake
• However, program must guarantee OK to be written from other procs 26

point-to-point
• MPI_Send(void const* buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)
• buffer: pointer to data to be sent
• count: number of data (not byte!)
• datatype: data type of data
• dest: destination rank in comm
• tag: tag for matching
• comm: Communicator

• MPI_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status*
status)
• source: source rank in comm. (any is also supported)
• status: result of receiving (length, source rank, etc.) 27

point-to-point

28

MPI_Send(rank=1,
tag=1) MPI_Recv(rank=0, tag=1)

rank=0 rank=1 rank=2

MPI_Recv(dest=ANY,
tag=1)

MPI_Recv(rank=ANY,
tag=2)MPI_Recv(rank=0, tag=2)

MPI_Send(rank=2,
tag=2)

“tag” matches MPI_Send with MPI_Recv.
Data are transferred between MPI_Send and MPI_Recv that are have same tag.

MPI DataType
• DataType

• MPI_INT, MPI_FLOAT, MPI_DOUBLE, etc.
• Specifies what kind of data to communicate

• MPI does not use byte in size
• (# of elements) * (DataType)
• 100 * MPI_INT

• MPI is based on array
• useful for collective communications

• Extended Data Type
• Program defines new data type

• combining basic data types into one
• → for structures and array of structure

• Non-contiguous data transfer
• optimization for transfer a part of array
• allows MPI library to optimize non-contiguous data transfer

29

Send()

non-
contiguous

contiguous

int A[N][M];

1

1
Ex: Monte carlo
• Based on random numbers
• Consider 1/4 area of a circle (radius=1)
• Plot points randomly in range x=0~1, y=0~1

• Check a point is inside the circle
• Is distance from center less than 1?
• !! + #! < 1 ⟺ !! + #! < 1

• If p points are inside circle, area is approximately !" and ! = 4 !
" .

• Accuracy depends on N. Larger N is better.
• Very easy to implement using MPI

• Split work into procs.
30

Area＝ "
#'(

! = "
#'

Proc. 1 Proc. 2 Proc. 3 Proc. 4
0 ‒ 24 25 ‒ 49 50 ‒ 74 75 - 99

Proc. 1 (N=100)
0 ‒ 99

31

N=1 N=5

N=1000 N=10000

7849 / 10000 * 4 = 3.1396

0 / 1 * 4 = 0 4 / 5 * 4 = 3.2

779 / 1000 * 4 = 3.116

32

#include <mpi.h>

int main(int argc, char** argv) {
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
printf("MPI(rank=%d, size=%d)¥n", mpi_rank, mpi_size);

unsigned long loop = 1000000000lu;
int repeat = 10;

for (int r = 0; r < repeat; r++) {
compute_main(loop / mpi_size);

}

MPI_Finalize();

return 0;
}

Each process computes (loop/mpi_size) points

33

void compute_main(unsigned long loop) {
int n_inside = 0;

for (unsigned long i = 0; i < loop; i++) {
double x = random01();
double y = random01();

if (x * x + y * y < 1.0) {
n_inside += 1;

}
}

if (mpi_rank == 0) {
for (int i = 1; i < mpi_size; i++) {

unsigned long temp;
MPI_Recv(&temp, 1, MPI_UNSIGNED_LONG, i, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
n_inside += temp;

}
} else

MPI_Send(&n_inside, 1, MPI_UNSIGNED_LONG, 0, 0, MPI_COMM_WORLD);

if (mpi_rank == 0)
printf("result = %.10f¥n", compute_pi(n_inside, mpi_size * loop))

}

R=1 R=2 R=3

R=0

n_inside

if (my rank is not 0)
send result to rank zero

Rank 0 prints the final result

if (my rank is 0)
Receive other’s result (Rank 1~3)

34

result = 3.2000000000
PI = 3.1415926535897 ...

loop = 10
time = 0.000 sec

result = 2.9600000000
PI = 3.1415926535897 ...

loop = 100
time = 0.000 sec

result = 3.1240000000
PI = 3.1415926535897 ...

loop = 1000
time = 0.000 sec

result = 3.1052000000
PI = 3.1415926535897 ...

loop = 10000
time = 0.000 sec

result = 3.1516000000
result = 3.1208000000
result = 3.1612000000
result = 3.1268000000
result = 3.1248000000
result = 3.1432000000
result = 3.1468000000
result = 3.1556000000
result = 3.1244000000
result = 3.1244000000

Collective
• Collective

• performs N-to-N communications
• All procs. in a communicator must be participate
• Sub-communicators API for partial (not WORLD) collective

• Barrier synchronization, Broadcast, Gather, Scatter, Allgather,
Alltoall, Reduce, Allreduce, ...
• I will explain them in following slides

•Why do we use them?
• Collectives can be composed of sends and recvs
• However, MPI library optimizes them in terms of algorithm and
communication pattern

35

MPI_Barrier
• MPI_Barrier(MPI_Comm comm)

• Synchronize among procs. in comm
• MPI_Barrier guarantees all procs. have
arrived the call
• exit timing from MPI_Barrier may not be
same across pros.

• Due to delay of network and noise of
execusion

36

MPI_Barrier()
MPI_Barrier()

MPI_Barrier()

rank=0 rank=1 rank=2

MPI_Bcast
• MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)
• Data in buffer at rank=root are sent to other (rank != root) procs.
• Bcast = Broadcast
• Behavior is calling MPI_Send()s for each proc.
• MPI_Bcast allows library to optimize
• For example:

• tree-based algorithms (O(log N))
• Network supported Bcast

37

x
rank=0 rank=1 rank=2 rank=3 rank=4
root

x x x x x

MPI_Gather
• MPI_Gather(void const* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)
• Gathering data

• data in sendbuf at all procs.
• →
• recvbuf at root proc.

38

rank=0 rank=1 rank=2 rank=3 rank=4
root

sendbuf

recvbuf

MPI_Scatter
• MPI_Gather(void const* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)
• Scattering data

• data in sendbuf at root proc.
• →
• recvbuf at all procs.

• Reverse of MPI_Gather

39

rank=0 rank=1 rank=2 rank=3 rank=4
root

recvbuf

sendbuf

MPI_Alltoall
• MPI_Alltoall(void const* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)
• Performs to transpose a matrix
• all ranks must communicate with all ranks

• So, this is called as “alltoall”
• Optimizing alltoall is very difficult

• optimization depends on topology of network

40

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Alltoall

rank=0

rank=1

rank=2

rank-3

MPI_Allgather
• MPI_Allgather(void const* sendbuf, int sendcount,
MPI_Datatype datatype, void* recvbuf, int recvcount,
MPI_Datatype datatype, MPI_Comm comm)
• Behavior is Gather() then Bcast()

• Typical usage is to gather and to share the result of computation
• Optimized algorithm is used better than just calling gather and bcast.

41

rank=0 rank=1 rank=2 rank=3 rank=4
root

sendbuf

recvbuf

MPI_Reduce / Allreduce
• MPI_Reduce(void const* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
comm)
• Compute reduction of sendbuf at all procs using op

• recvbufroot = sendbuf0 op sendbuf1 op ... op sendbufN
• Behavior is gathering sendbuf to root and applying op them at root

• MPI uses optimized algorithm, thus this will be O(log N)
• Typical usage is backpropagation in AI learning

• Allreduce = Reduce + Bcast
• Allreduce shares the result of Reduce on all procs.

42

1 2 3 4 515 = +

rank=0 rank=1 rank=2 rank=3 rank=4
root

op=MPI_SUMの場合

+ + +

Communication Model (1/3)
• How MPI guarantee communication is competed?
•When sender calls MPI_Send(), data is arrived at receiver?

• You may think “MPI_Send sends data, so yes!”
• → Not guaranteed

• This is very important to write correct program
• Generally, we don’t need to care about it

• Understanding communication model helps you to optimize your program

43

Communication Model (2/3)
•When MPI_Send() returns,

• it does not guarantee that data is arrived at receiver
• e.g., for small messages, it just writes data to buffer at sender

• Nothing happens on network
• e.g., data are just arrived at receiver, but still in buffer

• MPI_Recv() is under processing

• MPI does not guarantee completion of communication
• If you want to know, need to check yourself

• Completion of MPI communication function
• → The buffer given to the function is ready to use
• MPI_Send: OK to modify the buffer for further comm./comp.
• MPI_Recv: OK to read from the buffer 44

Communication Model (3/3)
• Most MPI implementations use two kind of protocols for point-to-
point
• Eager

• for short messages
• Sender writes (small) eager buffer at receiver
• MPI_Recv can be delayed

• Handshake
• for large messages
• MPI_Send and MPI_Recv wait each other (handshake)
• and then, transfer the data

• Eager buffer is not used because MPI_Recv know receive buffer given by application
45

Non-blocking
• Non-blocking functions

• Immediately returns when preparation is
completed

• Do not write/read the buffer after returns
• This allows program to overlap computation
with communication

• MPI_Request
• ticket for non-blocking communications
• We use this to check if finished later

• MPI_Wait/Waitall/Waitany
• Wait for completion of given requests

• MPI_Waitall/Waitany
• Wait for multiple requests (as array)
• Waitall: all of requests
• Waitany: one of requests at least 46

Comp. Send

Blocking

Comp.
Transfer

Non-Blocking

Isend

Non-blocking Point-to-Point
• Add “I” to non-blocking functions

• MPI_Send → MPI_Isend
• MPI_Recv → MPI_Irecv
• “I” for Immediate or Incomplete
• MPI_Request is added in arguments

• MPI_Isend(void const* buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request* request)
• MPI_Irecv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request*
request)

47

MPI_Isend, Irecv

48

MPI_Request r[2];
MPI_Status status[2];

MPI_Isend(sendbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &r[0]);
MPI_Irecv(recvbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &r[1]);

MPI_Wait(&r[0], &s[0]);
MPI_Wait(&r[1], &s[1]);

do_computation();

MPI_Waitall(2, r, status);

Non-blocking Collective
• MPI-3 introduces non-blocking version of collectives
• Skip in this class due to many

• Purpose is same as point-to-point
• Usage is same manner as point-to-point, too

• Ibarrier, Ibcast, Igather, Iscatter, Ireduce, ..., etc.
• Add “I” to non-blocking functions
• MPI_Request is returned to check later

• MPI_Ibarrier(MPI_Comm comm, MPI_Request* request)
• MPI_Ireduce(..., MPI_Comm, MPI_Request*)
• etc.

49

Ex: Laplace Equation

• Explicit method of Laplace (2D) equation

• Update values with average of neighbor 4 points
• Use two arrays(old, new)
• Update “new” with values in “old”
• Compute residual to check convergence
• Copy “new” to “old”

• Typical domain decomposition
• Split large computation into small computation on multiple processes 50

並列処理の例（３）：laplace

• Laplace方程式の陽的解法

– 上下左右の4点の平均で、
更新していく

– Oldとnewを用意して直前
の値をコピー

– 典型的な領域分割
– 最後に残差をとる

𝜕2𝑓
𝜕𝑥2

+𝜕2𝑓
𝜕𝑦2

= 0
𝑓 0,−1 + 𝑓 −1,0 + 𝑓 1,0 + 𝑓 0,1 − 4𝑓 0,0 = 0

離散化

*𝑓(−1,0) means 𝑓(𝑥 − ∆𝑥, 𝑦)

𝑓(0,0)𝑛𝑒𝑤 =
1
4

𝑓𝑜𝑙𝑑 0,−1 + 𝑓𝑜𝑙𝑑 −1,0 + 𝑓𝑜𝑙𝑑 1,0 + 𝑓𝑜𝑙𝑑 0,1

discretization

Ex: Laplace Equation

• Decompose 2D domain with 1D block
• Some area requires data on next
process
• if y-1 or y+1 are out of my domain
• Yellow area in the right figure
• We call the area as “boundary”

• To obtain boundary data on next
process, we use MPI communication
• P1 sends boundary to P0 and P2
• P2 sends boundary to P1 and P3

51

行列分割と隣接通信

• 二次元領域をブロッ
ク分割

• 境界の要素は隣の
プロセスが更新

• 境界データを隣接
プロセスに転送

P0

P1

P2

P3

u[x][y] = 0.25 * (uu[x-1][y] + uu[x+1][y] + uu[x][y-1] + uu[x][y+1])

Exchange Data
• Simple way

• MPI_Send() & MPI_Recv()
• Possibility of blocking by MPI_Send
• MPI_Recv may never be executed

• If and only if MPI_Send is eager,
MPI_Recv can be executed
• we cannot guarantee this
• depending on implementation and size
of message

• How to solve
• Use MPI_Sendrecv()

• MPI do send and receive at same time
• Use Non-blocking comms.

• MPI_Isend never blocks
• We can handle multiple comms.
simultaneously in any order

52

MPI_Send()

MPI_Recv()

MPI_Send()

MPI_Recv()

MPI_Isend()

MPI_Irecv()

MPI_Isend()

MPI_Irecv()

MPI_Waitall() MPI_Waitall()

Communicator
• Communicator

• Group of processes
• Target of communication

• Program can create
communicators as needed
• Typical Usage:

• Reorder processes (rank number)
• To split (MPI_Comm_split())

53

MPI_COMM_WORLD(N=100)

comm1(N=50) comm2(N=50)

MPI_Comm_split()

Cartesian topology
• API for topology of Cartesian coordinate
• MPI_Cart_create(MPI_Comm comm_old, int ndims, int const*
dims, int const* periods, int reorder, MPI_Comm*
comm_cart)
• Create new MPI_Comm from comm_old

• Split comm_old into ndims dimensions
• dims and periods are array representing size of dimensions and boundary type
• If reorder is true, order of rank will be reordered.

• MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int* rank_source, int* rank_dest)
• Obtain neighbor rank on Cartesian topology

• direction is dimension to shift (0 to ndims-1)
• disp is how many ranks to shift

• The results are stored into rank_source and rank_dest
• If result is out of domain, MPI_PROC_NULL will be returned

54

-2 +2 direction=0
disp=2

55

/*
** Laplace equation with explicit method
**/

#include <math.h>
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

/* square region */
#define XSIZE 256
#define YSIZE 256
#define PI 3.1415927
#define NITER 10000
double u[XSIZE + 2][YSIZE + 2], uu[XSIZE + 2][YSIZE + 2];
double time1, time2;
void lap_solve(MPI_Comm);
int myid, numprocs;
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int xsize;

u and uu are array for computation
u is old and uu is new.

Don’t forget to include mpi.h

56

void initialize() {
int x, y;
/* Compute initial values */
for (x = 1; x < XSIZE + 1; x++)

for (y = 1; y < YSIZE + 1; y++)
u[x][y] = sin((x - 1.0) / XSIZE * PI) + cos((y - 1.0) / YSIZE * PI);

/* zero fill on boundaries */
for (x = 0; x < XSIZE + 2; x++) {

u[x][0] = u[x][YSIZE + 1] = 0.0;
uu[x][0] = uu[x][YSIZE + 1] = 0.0;

}

for (y = 0; y < YSIZE + 2; y++) {
u[0][y] = u[XSIZE + 1][y] = 0.0;
uu[0][y] = uu[XSIZE + 1][y] = 0.0;

}
}

57

#define TAG_1 100
#define TAG_2 101
#ifndef FALSE
#define FALSE 0
#endif

void lap_solve(MPI_Comm comm) {
int x, y, k;
double sum;
double t_sum;
int x_start, x_end;
MPI_Request req1, req2;
MPI_Status status1, status2;
MPI_Comm comm1d;
int down, up;
int periods[1] = {FALSE};

/*
* Create one dimensional cartesian topology with
* nonperiodical boundary
*/

MPI_Cart_create(comm, 1, &numprocs, periods, FALSE, &comm1d);
/* calculate process ranks for 'down' and 'up' */
MPI_Cart_shift(comm1d, 0, 1, &down, &up);
x_start = 1 + xsize * myid;
x_end = 1 + xsize * (myid + 1);

Create 1D cartesian topology.
Boundary is not periordical.
ndims=1, dims={numprocs}

Get ranks of up and down process.
MPI_PROC_NULL for boundaries.

My compute range
x_start <= x < x_end

+1

-1down

up

58

for (k = 0; k < NITER; k++) {
/* old <- new */
for (x = x_start; x < x_end; x++)

for (y = 1; y < YSIZE + 1; y++) uu[x][y] = u[x][y];

/* recv from down */
MPI_Irecv(&uu[x_start - 1][1], YSIZE, MPI_DOUBLE, down, TAG_1, comm1d, &req1);
/* recv from up */
MPI_Irecv(&uu[x_end][1], YSIZE, MPI_DOUBLE, up, TAG_2, comm1d, &req2);
/* send to down */
MPI_Send(&u[x_start][1], YSIZE, MPI_DOUBLE, down, TAG_2, comm1d);
/* send to up */
MPI_Send(&u[x_end - 1][1], YSIZE, MPI_DOUBLE, up, TAG_1, comm1d);
MPI_Wait(&req1, &status1);
MPI_Wait(&req2, &status2);

/* update */
for (x = x_start; x < x_end; x++)

for (y = 1; y < YSIZE + 1; y++)
u[x][y] = .25 * (uu[x - 1][y] + uu[x + 1][y] + uu[x][y - 1] + uu[x][y + 1]);

}

void lap_solve(MPI_Comm comm) {
....

Exchange
boundary data

59

void lap_solve(MPI_Comm comm) {
....

/* check sum */
sum = 0.0;
for (x = x_start; x < x_end; x++)

for (y = 1; y < YSIZE + 1; y++) sum += uu[x][y] - u[x][y];

MPI_Reduce(&sum, &t_sum, 1, MPI_DOUBLE, MPI_SUM, 0, comm1d);

if (myid == 0) {
printf("sum = %g¥n", t_sum);

}

MPI_Comm_free(&comm1d);
}

Compute residual
Use MPI_Reduce for summation

60

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Get_processor_name(processor_name, &namelen);
fprintf(stderr, "Process %d on %s¥n", myid, processor_name);

xsize = XSIZE / numprocs;
if ((XSIZE % numprocs) != 0)

MPI_Abort(MPI_COMM_WORLD, 1);

initialize();

MPI_Barrier(MPI_COMM_WORLD);
time1 = MPI_Wtime();
lap_solve(MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);
time2 = MPI_Wtime();

if (myid == 0) {
printf("time = %g¥n", time2 - time1);

}

MPI_Finalize();
return (0);

}

Main part

Initialize

MPI_Init

MPI_Finalize

One-Sided
• Brief overview of one-sided comm.
• “Window” object is used to represent
memory region for one-sided
communication
• public copy & private copy
• RMA separate memory model
• Synchronization is required to match data
between public and private

• RMA unified memory model (since MPI-3)
• public and private are same (not-separate)
• If network supports DMA and MPI supports
unified, this model is very efficient

61

public copy

private copy

RMA Put RMA Get

Store Load

sync. window

(Remote Access)

(Local (CPU) Access)

Report (MPI)
• Improve Laplace program shown in this class.

• Report must contain
• Program code
• Description of improvement

• Where and how did you modify
• What is improved and how is it improved.

• Output of program
• Improve must relate to MPI

• Hints, but not limited to
• Using OpenMP for hybrid parallelization
• Use one-sided communication
• 2D domain decomposition instead of 1D

62

