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Performance metric on 
computation and communication

• computation performance (mainly floating point)
– FLOP: (number of) Floating point Operations

number of floating point operations in the processing
ex) for(i=0; i<100; i++)  a[i] = b[i] * c + b[i];

⇒ 200FLOP
– FLOPS: Floating point Operations Per Second

floating point operations per second -> Performance
ex) computing the above calculation in 2 micro-sec.-> 100 MFLOPS

K: 103 M: 106 G: 109 T: 1012 P: 1015 E: 1018

• communication performance
– B/s (Byte/sec):

data transfer amount per second
ex) theoretical peak performance of Infiniband 4xQDR = 4 GB/s
sometimes, with bps (bit per second) 
Caution: not always 1Byte=8bit !!
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What is parallel processing ?
• “Decomposing single problem within a number of 

processes and solving it to enhance the performance 
and/or increase problem size”
– “Solving single problem” ⇒ differs from distributed processing
– “Problem decomposing (parallelizing)” ⇒ aware of efficiency
– “Improved” issues ⇒ not just speed, but also problem size, 

computing accuracy, etc. (various metrics)
• parallel processing v.s. concurrent processing

– solving parallelized processes in “pseudo” parallel
⇒concurrent processing

– solving them in “physically” parallel (simultaneously)
⇒parallel processing

• resources to contribute for parallel processing
– CPU, memory, disk, network, etc. ⇒ all the computation 

resources may contribute for improvement
– hereafter, we call these processes to be mapped to multiple 

CPUs as “parallel processes”
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High performance computing (HPC)
and parallel processing

• Requirement for numerical computing performance in scientific computation 
and large amount of data processing

• Computing order to increase the problem size N is not O(N) (linear)
– 3-dimensional fluid dynamic (climate simulation etc.)

when spatial resolution on 1-dimension is N, computing operation’s order is 
O(N3)

– matrix calculation (linear equation)
for direct method (Gaussian elimination etc.) for N variables of equation, 
computing operation’s order is O(N3)

– n-body problem (gravity calculation in astrophysics)
force computation for N particles requires computing operations with O(N2)

• There is no “enough performance nor amount” to the requirement
⇒ large scale scientific computation does not survive without Parallel 
Processing

• Large amount of computation, data and communication requirements 
always need effective parallel processing with appropriate resource 
utilization
⇒ “High Performance” in any issue ⇒ Parallel Processing
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Limit of computing performance
• Density of semiconductor 

integration is growing with a 
rate of twice/1.5year
⇒ Moor’s Law

• If all the transistors on the 
silicon chip can contribute to 
the computation, it says 
“processor performance is 
growing as twice/1.5year of 
speed”

• Transistor count on a chip 
(by Intel web site)

• Memory capacity is also 
increased with this rate

• It is impossible to catch up 
the growth of computing 
performance requirement

• Also, Moor’s Law itself is 
reaching to the limit

⇒ (Massively) Parallel (from Intel’s home page)



TOP500 List (Nov. 2022)

Sum of #1～#500

#500 Computer

#1 Computer
(Frontier@ORNL)



TOP500 list on Nov. 2022 (#58)

# Machine Architecture Country
Rmax

(TFLOPS) Rpeak (TFLOPS) GFLOPS/W

1 Frontier, ORNL MPP (HPE/Cray, EPYC, MI250X) USA 1,102,000 1,685,652 52.23

2 Fugaku, R-CCS MPP (Fujitsu, A64FX) Japan 415,530 513,855 14.78

3 LUMI, 
EuroHPC/CSC MPP (HPE/Cray, EPYC, MI250X) Finland 309,100 428,703 51.38

4 Leonardo, 
EuroHPC/CINECA Cluster (Atos, Xeon, A100, IB) Italy 174,700 255,751 31.14

5 Summit, ORNL Cluster (IBM, GPU V100) USA 148,600 200,795 14.72

6 Sierra, LLNL Cluster (IBM, GPU V100) USA 94,640 125,712 12.72

7 TaihuLight, NSCW MPP (Sunway, SW26010) China 93,015 125,436 6.05

8 Perlmutter Cluster (AMD, GPU A100) USA 64,590 89,794 27.37

9 Selene Cluster (AMD, GPU A100) USA 63,460 79.215 23.98

10 Tianhe-2A, NSCG Cluster (NUDT, Xeon,  
Matrix2000) China 61,445 100,679 3.32
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Parallelization Method
• Various parallelization methods for problems

– Partitioning a problem
ex）domain decomposition: partitioning the problem in spatial domain to 
dispatch them to parallel processes

– Distributing a problem
ex) parameter search: trying a problem with various parameters and 
getting a statistical result ⇒ a set of parameters are executed in one 
process, and there is a master process to collect and statistically 
process them

• Various parallel methods
– EP (Embarrassingly Parallel): each of parallel processes is individual 

(such as parameter search) and the entire problem is naturally 
parallelizable

– data parallel: parallelizing the processed data with the same procedure 
(ex: domain decomposition)

– pipeline: each part of pipelined processes is dispatched to 
computational resource

– master/worker: multiple workers and a management process
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Example of EP

• Monte Carlo Simulation
– Examining a number of cases with random parameters, then 

getting the result with statistical process
– ex: calculating π with random numbers

N pairs of (x, y) where 
When C is the number of pairs which satisfies                  ,
C/N is closing to 4/π

– The examination on each pair of (x, y) can be performed 
individually and simultaneously ⇒ completely in parallel

– Finally, getting the summation of C from
these parallel processes

(0 ≤ x ≤1,0 ≤ y ≤1)
x2 + y2 <1

C/N
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Example of data parallel case
• domain decomposition

– Calculating points are uniformly distributed in 
some dimensions of space, and partitioning 
them into orthogonal blocks to be parallelized

– There are some communication required to 
exchange data
ex) for PDE with explicit method, surface points 
data are exchanged with neighbors

– ex  (1-dimension))
for(t=0; t < T; t++){

for(i=0; i < N; i++)
a[i] = b[i-1] + 2*b[i] + b[i+1];

for(i=0; i < N; i++)
b[i] = a[i];

}

problem space

parallel process unit
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domain decomposition (cont’d)

for(t=0; t < T; t++){
for(i=0; i < N; i++)

a[i] = b[i-1] + 2*b[i] + b[i+1]; // communication required
for(i=0; i < N; i++)

b[i] = a[i];                                 // communication not required
}

....    b(5)    b(6)    b(7)    b(8)    b(9)    ....

....    a(5)    a(6)    a(7)    a(8)    a(9)    ....

border of parallel processes



13

Pipeline parallelism

• A set of data are processed in the same manner and 
same order, the entire data stream can be processed by 
each computation stage and these stages are connected

• Example of vector processing
for(i=0; i < N; i++){

a[i]=b[i] * c[i] + s * d[i];
}

multiply

continuously read b[i]

continuously read c[i]

multiply

continuously
read d[i]

s (scalar)

sum

continously write to a[i]
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Master/worker parallelization
• One master and several workers exist, and the master maintains a 

“pool” of data to be processes (# of data sets >> # of workers)
• The master retrieves a set of data to dispatch to a worker, and 

repeats it while there is a data set in the pool
• A worker processes the dispatched data, and returns the result to 

the worker, then is assigned the next data

master::                                             worker::
// give a job to each worker               while(1){
while(1){                                                // receive a job from master

// receive worker’s result                   // process the job
// give a job to the worker                  // send the result to master

}                                                          }
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Master/Worker (cont’d)

• Especially effective when the loads of processes are not 
balanced and it is difficult to keep load balance

• Each process should be in EP manner

．．．

master
worker#1

worker#2

worker#3

worker#N

!
!
! !

!
!job pool (EP)

job assigning/
result retrieving
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Communication and Synchronization

• All processes have some interaction with each other and need to 
communication at certain point in the processing

• These communication may be the overhead which is not required in 
sequential processing
ex) surface data exchanging in domain decomposition

• Impact of communication to the computation efficiency
– Time to be spent for communication itself:

Overhead which does not exist in sequential process
– Time for synchronization (waiting) to stall the process:

Load imbalance causes the stall to wait for the communication partner
• It is required to minimize the overhead caused by communication 

and synchronization for efficient parallel processing
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Communication patterns and costs
• It depends on the parallel processing architecture

– Distributed Memory Architecture:
each process explicitly communicates with each other by data 
sending/receiving
⇒message passing (send, receive, ...)

– Shared Memory Architecture:
each process read/write the data from/to the shared address space
⇒shared memory access (write read, ...)

• Communication cost
– For message passing, the distance and geometrical relation of 

communicating processes is important
⇒ “neighboring communication” (physically close distance) requires a 
low cost and less impact on entire system communication

– For shared memory access, the geometrical relation of shared memory 
to be accessed is important
⇒ for NUMA architecture, the distance to memory differs

– In both cases, the bottom-line hardware performance strongly affects on 
the performance
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Cost of synchronization

• Distributed memory system case
– Network topology for parallel communication and synchronizing 

algorithm affect on the performance
– System size (# of parallel processors) is essential

• Shared memory system case
– Whether the hardware supports synchronization (primary) or not 

is important  (ex: memory lock feature)
– Process number to be synchronized is essential
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Metric for parallel processing efficiency

• Most important purpose of parallel processing is SPEED
• It is strongly expected to reduce the time for solution when we 

introduce the parallel processing... but
• It happens that the actual speed does not increased (very often!)
• Especially, it will be the problem when the system size (# of parallel 

processes) increases
⇒ “scalability” in parallel processing

• The metric to examine the efficiency of parallel processing is 
important

• degree of parallelism is defined as:
– parallelism in the problem: how much natural parallelism (or degree of 

parallelisms) exist in the problem
– parallelism in the system: how much hardware resources (# of 

processors, etc.) exist in the system
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Parallel processing performance (1)

• Speed-up ratio
– Let define the time required with one process as T1

– Let define the time required with p processes as T(p)
– s(p)=T1 / T(p)

s(p) is called as “Speed-up Ratio with p processors”
If s(p) > 1, it means the speed is increased

– Ideally, s(p)=p  ⇒ “linear speed-up”
（when p processors are used, there is a gain of p times)

# of processors (p)

s(p)

s(p)=p is ideal
⇒ linear speed-up

saturate with p increases
(very frequently happens)

it is OK (performance linearly
increases)
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Parallel processing performance (2)

• Parallel efficiency
– Inconvenience of s(p): it depends on p, and not an absolute value
– “It is ideal when s(p)=p” ⇒ “How is it achieved ?” as the efficiency
– e(p)=s(p)/p   ⇒ “linear speed-up” : e(p) = 1

e(p) does not depend on p, and it is better to achieve to 1 (normally it is 
lower than 1)

e(p)

e(p)=1 is ideal
⇒ linear speed-up

(usually) e(p) saturates with
increasing p

even it is enough
(constant e(p))

number of processors: p

1
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Amdahl’s Law and parallel processing
• Amdahl’s Law

– “Process efficiency is determined just by the efficiency of inefficient part 
rather than the average efficiency of all parts”

• Amdahl’s Law in parallel processing
– Let assume the sequential execution time as T1, and it can be devided

into Tp as the part which can be parallelized and Ts as the part which 
cannot be (only executable as sequential process)

T1=Tp+Ts

– If the part for Tp is executed completely in parallel (ideally), the total 
execution time with p processors T(p) is:

T(p)=Ts+Tp/p
– When p is infinite:

and

Thus “although increasing the number of processors p toward 
infinite, the parallel efficiency e(p) becomes 0 with the bottleneck 
of Ts”

T (p)
p→∞

= Ts

e(p)
p→∞

= T (p) / p = Ts / p = 0
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Scalable Problems

• Actually, there exists Ts in any problem, then the scalability of 
parallel efficiency is limited

• Does it pay to challenge “large scale parallel” or “massively parallel” 
actually ?
⇒ It’s OK if we assume a problem with large portion of Tp where 
Ts is negligible
⇒ It is called as “scalable problem”

• There are so many scalable problems in most of scientific 
computation, however it is always required to consider how Ts is 
large when we increase the system size p

• Another factor is how the communication/synchronization costs 
large because these parts also becomes the bottleneck like Ts
⇒ granularity: how much is the “grain” of parallel execution ?
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Granularity: parallel execution grain

• The dominant reason to decrease the parallel efficiency is the 
overhead for communication/synchronization
– They are just the overhead which does not exist in sequential process
– Synchronization causes some idling status without any processing

• It corresponds to the case where all other parallel processes stop, 
thus it seems to be a temporal sequential execution
⇒ Shorter time for this makes higher efficiency

• How long time is spent just for computation without 
communication/synchronization ?
– Long ⇒ “coarse grain”
– Short ⇒ “fine grain”

• Naturally, when the parallelism increases for a certain size of 
problem, the granularity becomes fine
⇒ difficulty in scalability
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Example in domain decomposition

• each process treats TWO points of computation
• exchanges TWO data sets with neighboring processes

....    b(5)    b(6)    b(7)    b(8)    b(9)    ....

....    a(5)    a(6)    a(7)    a(8)    a(9)    ....

• each process treats ONE point of computation
• exchanges TWO data sets with neighboring processes

....    b(5)    b(6)    b(7)    b(8)    b(9)    ....

....    a(5)    a(6)    a(7)    a(8)    a(9)    ....

coarse grained
processing

fine grained
processing
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Factors to determine parallel efficiency

• It is easy to achieve high efficiency when the problem size increases 
according to the system size increase

• The concept of granularity is relative, so it is required to examine the 
communication/synchronization overhead in the target application
⇒ ex) recording the wall clock time before/after the communication

• Always taking care of the parallel efficiency and resource utilization 
when the system size increases, based on the concept of granularity

• In some case, the application (algorithm) itself must be fine grained, 
and it is strongly required to care of the efficiency and trying to make 
it with coarser granularity
ex) combining multiple communication in one

• However, also be careful of changing the communication pattern 
when combining the communications for coarser granularity



“Strong” vs “Weak” Scaling

• When increasing the system size:
– If the problem size is fixed and only the system increases
⇒ “Strong Scaling” (fixed problem size)

– If the problem size is increased according to the system size 
increasement
⇒ “Weak Scaling” (fixed computation time)

• It is relatively easy to achieve Weak Scalability
– process granularity is not changed
– only the communication complexity (communication pattern) is changed 

and system must have the capacity to accept it
• It is relatively hard to achieve Strong Scalability

– process granularity is finer
– the system must have the capacity to accept higher late of 

communication
⇒ shorter latency is required for communication/synchronization

27
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Load imbalance and parallel efficiency

• Load balance: It is ideal that the computation and 
communication amount for each process is equal
– ex) when taking the global synchronization, all processes 

are ready for it at the same time, and there is no time to 
wait

• For domain decomposition on uniformly distributed data, 
the load is naturally balanced

• How the load imbalanced:
– Non-uniformly distributed domain decomposition
– In parameter search, each job execution time depends on its 

parameter
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Problem decomposition caring load imbalance

• Basically, it is ideal in domain decomposition to partition 
the problem space in large chunk for coarse grained 
processing

• For nonuniform problem space, the coarse grained 
decomposition causes the load imbalance

• It is important in some case to partition the problem 
space regardless the shape, to achieve load balancing
⇒ It may cause another imbalance in communication 
(pattern)
⇒ It may cause finer granularity

• These effects may trade-off with each other
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Example: MD with cut-off
• MD (Molecular Dynamics)

– There are p particles in n-dimension and 
simulating inter-particle force

– The potential energy is not like Coulomb 
potential, but with rapidly decreasing 
potential according to the distance
⇒ “well” style potential and can be 
processed with “cut-off”

• It is possible to reduce the communication 
amount to limit the partners in certain domain
– Partitioning the space in “cells” as like as 

domain decomposition, and processing 
the particles in a cell by a process
⇒ if the size of cell is set “slightly larger 
than cut-off radius”, it is necessary to 
communicate with neighboring cells only

target particle

cut-off radius

f (r) =α 1
r6
−β

1
r12
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MD with cut-off (cont’d)

• Particles move around in the time step by 
the interaction with other particles

• Load balance may be broken while the 
computation proceeds in cell mapping 
manner

• It is required to keep the number of 
particles within a cell to keep the load 
balance

• Methods
– 1) remapping the cells to parallel processes 

according to the density of particles per cell, 
in every certain steps

– 2) if the number of cells largely exceeds the 
number of processes, mapping the cells to 
processes in cyclic manner

– 3) giving up cell-mapping method, and 
directly mapping the particles to processes

heavy-wight cell
(many particles)

light-weight cell
(few particles)
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• Method-1)
When remapping the cell to process, a large amount of data should be 
moved, and also the neighboring cells are not mapped to the 
neighboring processes

• Method-2)
Cyclic mapping of cells to processes realizes easy load balancing, but 
the neighboring cells are not mapped to the neighboring processes 
(always) to cause long distance communication

• Method-3)
It is required to refer the table of particle to process mapping, and the 
communication distance may so long
⇒ There is no best way in any case

• It depends on the problem characteristics (ex: how the particles 
concentrate/distribute, potential energy, time length), and there is no 
general best solution

• For heavy load imbalancing, it pays dealing even with heavy 
communication cost

MD with cut-off (cont’d)
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Summary

• Importance of parallel processing on large scale scientific 
computation

• Parallel processing methodology and parallelization 
scheme

• Concept of speed-up and efficiency on parallelization
• Communication cost
• Amdahl’s Law and scalability
• Scalability and granularity
• Load balancing



Report

[1] Answer the following questions considering the parallel processing 
performance and its efficiency.
When solving a program with single processor, it takes T1 [sec] to 
complete. If this program can be perfectly parallelized (we can neglect 
the sequential process part), let’s think about parallel processing with p 
processors. Event the computation part is perfectly parallelized, the 
communication part takes Tcomm(p) [sec] as an overhead for 
calculation. Here, Tcomm(p) is a function of p.
(a) When solving this problem with p processors, express parallel 
processing time T(p), parallel speed-up ratio s(p), and parallelizing 
efficiency e(p), by equations.
(b) If Tcomm(p) is proportional to p as Tcomm(p)=αp, express the 
condition of α to keep the parallelizing efficiency higher than 70%. The 
answer should be expressed with T1 and p.
(c) Describe the relationship between T1 and α in the meaning of 
parallel processing speed-up.

34



Report (cont’d)
[2] Let’s assume a 2-dimensional (2D) physical problem space with size 
of N2 (N denotes the problem size of single dimension). And let’s 
assume this problem with n2 processors (here, N2 >> n2）. When we use 
domain decomposition method for parallelization, there two possible 
problem space decomposition and mapping to the processors; (a) 
decomposing the problem space in single dimension only, or (b) 
decomposing the problem space in two dimensions where a processor 
takes care of N/n elements in a single dimension. As shown in p.25 of 
this slide set, when updating the value of all points, previous time step’s 
values of neighboring elements are referred. (Remind that this problem 
is 2D while the example of p.25 is described in 1D version.)
Assuming the computation amount to update each point is 6[FLOP], 
and the communication data ammount of neighboring points is 8[Byte], 
compare and discuss two decomposing methods (a) and (b) in the 
meaning of parallel processing time and communication overhead 
among processors. Then, explain which version is faster in general. 
You don’t have to consider the boundary condition at the edge of 
problem space (it is so called “cyclic boundary condition”).
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