GaNエピタキシャル成長の 第一原理分子動力学計算による 研究

石井晃 : 鳥取大工、産総研

共同研究者 小山聖史、逢坂豪(鳥取大工)

CP-PACS研究会 2003年2月10日

謝辞 <u> 産総研-TACC</u> SR8000 東大情報基盤センターSR8000 森川良忠 産総研 STATE

Outline

結晶成長と第一原理計算:例
GaN(0001)上ホモ成長の第一原理計算
SiC(0001)表面上の窒素原子吸着 まとめと展望

議論はすべて、MBEを念頭に置いている

う子線エピタキシー(MBE)

結晶成長と第一原理計算

結晶成長は表面上の1個の原子から始まって、
 マクロスケールに広がっていく現象

♣ 最初の数個の原子による"成長核"での、 ボタンの掛け違えから、島成長に影響を与える。

初期成長核までは第一原理計算で
 島成長は古典MD,動的モンテカルロ法

動的モンテカルロ法

+

原子の蒸発・

0

乱数

原子の移動

原子の吸着・

(a) 初期表面

(b) 600 にて12min成長。 ピラミッドの高さ12ML 側面は{1,1,13}面

(c) 図式化したもの

Motoshi Shibata,Yoshiki Nitta, Ken Fujita,and Masakazu Ichikawa, Phys. Rev. B 61,7499(2000)

酸化膜を別の終端膜と置き換えれば、シミュレーションを 読み替えることが出来る。

疑似SiO2 (1)

(1)

temperature : 600 K beam intensity : 0.1 ML/s barrier energy(SiO2) : 0.5 eV

* barrier energy(Si) : 0.35 eV

周囲の方が 動きにくい

疑似SiO2 (2)

(2)

temperature : 600 K beam intensity : 1.0 ML/s barrier energy(SiO2) : 0.3 eV

* barrier energy(Si) : 0.35 eV

周囲の方が、ホンの少し 動きやすい

2.0 MI

疑似SiO2 (3)

(3)

temperature : 600 K beam intensity : 0.1 ML/s barrier energy(SiO2) : 0.25 eV

* barrier energy(Si) : 0.35 eV

周囲の方が 動きやすい

窒素終端膜は この場合に相当

疑似SiO2 (4)

(4)

temperature : 700 K beam intensity : 0.5 ML/s barrier energy(SiO2) : 0.3 eV

* barrier energy(Si) : 0.35 eV

周囲の方が 動きやすい

0.30 MI

シミュレーション2

GaAs(001)へInAsをふらせる。 初期表面

計算領域は30×30原子数

GaAs(001)表面上での それぞれの吸着原子による ホッピングバリアエネルギーの 第一原理計算

吸着 原子	表面構造	垂直方向 バリアー eV	平行方向 パリアー eV
As	As終端面	0.8	0.8
In	As終端面	0.8	0.7
Ga	As終端面	1.2	1.5
In	As/In/GaAs	0.4	0.3
As	Ga終端面	1.1	1.3

結晶成長と第一原理計算

 実験で観測される量子ドットの自然形成の 様子は、このようにして原子一つ一つの動 きを第一原理計算で、多数個の原子の動 きを動的モンテカルロ法で扱えばシミュ レーション出来る。

より精度を高めるためには、原子1個1個 だけでなく、十数個程度の原子の島やス テップの第一原理計算が欲しい

Computational condition

- Density-functional theory with GGA (Generalized Gradient Approximation) for XC.
- Ultrasoft Pseudopotential, plane-wave basis set (energy cutoff 100Ry, 36Ry)
- Sampling k-point (2,2,1)
- Supercell geometry
 - Passivation of one side by fractional hydrogen
- Program code : STATE
- Computer : parallel computer SR8000

 (National Institute of Advanced Industrial Science and Technology (AIST)
)

研究の背景 •1993年日亜化学の中村氏により青色の発 光ダイオードが実用化された。 → 光の3原色がそろうことになり、LEDによる、 フルカラーディスプレイも可能となる。 ▶ 2002年2月、大手電機メーカー9社により、 Blu-ray Diskが発表された。 従来のDVDの5倍近くの容量が可能である。 これも、波長405nmの青紫色レーザーであ 3.

* 光の関係は、半導体のバンドギャップエネ ルギーが目安となる。 <u>90年代までに完成していたレーザーは</u> GaAs系で1.4eV程度であった。 ◆青色を得るためには、3eV程度が必要で ある。 。そこで候補としてあがっていたのが、 族のZnSe(セレン化亜鉛)と 族の GaNであった。

ZnSeはGaAsとほぼ良い格子定数の一致 青色発光体はZnSeで研究されていた。 中村氏はAl₂O₃基板上にGaNを結晶成長 させた。

各子定数とバンドギャップの関係

GaN, 2H-SiC

動機

♣ GaNの結晶成長機構の最適化を第一原理 計算を用いて解明し、MBEによるGaNの 成長を実用化へ近づける

SiC基板上のGaN成長はホモ成長とどれ だけ違うか?

✤SiC基板上にGaNは直接成長するか?

⇔ GaとNの交互供給はうまくいくのか?

GaN(0001)表面上のGaN成長 ● 原子状で供給された窒素原子は H3サイトで安定 -> 成長の阻害要因

 GaN(0001)のエピタキシャル成長 Ga過多の環境下では0K 石井ら、2002

論文 A.Ishii, D.Miyake and T.Aisaka, Jpn.J.Appl.Phys. <u>41</u> (2002) L842 A.Ishii, Appl. Surf. Sci., submitted

N-adatom diffusion on GaN(0001) Ga-terminated surface

L corresponds to the original wurtzite site

T.Zywietz, J.Neugebauer, and M.Scheffler Appl.Phys.Lett. 73 (1998) 487

Adsorption of Nitrogen on GaN(0001)-(2 × 2) Ga-adatom Surface

H3 : unexpected stable site

●: Ga ●: N

[0001]

 $oldsymbol{\bullet}$

Ishii, Miyake, Aisaka JJAP 2002

L : Nitrogen should come here!

吸着した窒素原子はH3サイトで安定 さらにGaを供給しても...

Ishii, Miyake, Aisaka JJAP 2002

●: Ga ●: N

- Ga is adsorbed at ontop positon to the N
- N at H3 is very stable.
- Polarity of Ga and N seems to be upside down.
- We could not prevent N from taking H3 site with only one Ga

Structure of surface reconstruction at Site L-Ga

●:Ga ●:N

> Energy is 0.8eV above the energy of H3-Ga

Ga and N both take the site near to the original wurtzite site.

Ishii, Miyake, Aisaka JJAP 2002

2Ga adatoms + N adatom

Most stable configuration for N + 2Ga

Ga-rich condition is important to prevent N from taking the H3 site.

GaN(0001) MBEホモ成長

窒素原子にとって wurtzite構造で来るべきサイトはエネルギー的に不安定。

全家原子にとって最も安定なのはH3サイト。それは窒素原子の3本の結合手が下地にガリウム原子と結合して満たされるから。

したがって、よりよいエピタキシャル成長のためには、窒素を<u>H3サイトに来させないこと</u>.そのためにはGa過多条件が有効である。

Ishii, Miyake, Aisaka JJAP 2002 GaNと同じように、ワイドバンドギャップを 持つSiC(0001)上に、GaNを成長させた場 合では、どのようになるかを確かめる。
 本研究では、SiC(0001)を基板に用いて、 NとGaの吸着を考える。

Si

• C

3C-SiC

Zincblende structure

2H-SiC

Wurtzite structure

N on 2H-SiC(0001)

Accordin to our calculation, the H3 site is also the most stable site for nitrogen adatom on SiC(0001)

	Site
=+ 笛 红 甲	Site L
	Site 2
	Site H
	Site 4
	Site T4
	Site 6
2 Ga or N	Site 7
	Site
	Site L
	Site 2
	Site H
	Site 4
	Site T
	Site 6
	Site 7

.

Site	(eV)
Site L	2.15
Site 2	1.25
Site H3	0.62
Site 4	0.77
Site T4	0.00
Site 6	0.92
Site 7	0.76

Ga

Site	(eV)	
Site L	2.73	
Site 2	0.94	
Site H3	0.00	N
Site 4	0.78	
Site T4	2.61	
Site 6	0.83	
Site 7	0.56	

結果の比較 L 2 H3 4 T4 Gaの吸着

L 2 H3 4 T4 Nの吸着

7 6 H3 6 7 Gaの吸着

7 6 H3 6 7 Nの吸着

Conclusion

- SiC(0001)表面上の窒素原子の最安定吸着位置は、 GaN(0001)表面上と同じH3サイトである。
- GaN(0001)ホモ成長・SiC(0001)上へのヘテロ成長の第一 原理計算による研究から、Ga過多環境では窒素原子がH 3サイトに吸着することを妨げ、GaNがエピタキシャル成長 すると考えられる。

ステップの成長の議論が今後の課題である。

微傾斜面におけるステップ

ステップ

ステップでは、上へだけでなく、 横へも成長の可能性があり、 結晶成長の理解の上で重要

ステップ構造を計算するには...

これで312個の原子 => 周期的にして第一原理計算

Suggesition for MBE growth

- Initially, we supply Ga alone.
- After confirming 2x2 Ga-adatom reconstruction, we begin to supply N.
- We stop supplying N after the growth of 1ML N and 1ML Ga.

