Quarkonia at finite temperature

大野浩史1,2

1筑波大学計算科学研究センター,

²Brookhaven National Laboratory

研究会「有限温度密度系の物理と格子QCDシミュレーション」 筑波大学計算科学研究センター、2015年9月5日

Plan of this talk

- Introduction
- Part I (Studies in WHOT-QCD)
 - A variational analysis on charmonia at finite temperature
- Part II (An ongoing study)
 - Charmonia and bottomonia at finite temperature on large quenched lattices
- Summary and outlook

Quarkonia at finite temperature

- Bound states of heavy qq
- At a certain temperature T_D, the dissociation should occur due to the color Debye screening
- An important probe of the quark-gluon plasma created in relativistic heavy ion collisions at RHIC, LHC
- → Theoretical investigation of in-medium properties of quarkonia plays an important role to understand experimental results.

Meson correlator and spectral function

PART I

A variational analysis on charmonia at finite temperature

HO, T. Umeda and K. Kanaya (WHOT-QCD Collaboration), J.Phys. G36 (2009) 064027 HO *et al*. (WHOT-QCD Collaboration), Phys.Rev. D84 (2011) 094504

Spectral function in finite volume

A spectral function consists of **discrete spectra** due to the finite spatial lattice extent.

KK60th

Variational analysis

- A suitable method to study discrete spectra.
- Excited states also can be investigated.
 - Dissociation of charmonium excited states are important for the sequential J/Ψ suppression.
 L. Antoniazzi et al. [E705 Collaboration] (1993)
- Construct a matrix of correlators from a certain operator set with a same quantum number

$$\mathbf{C}_{\Gamma}(t) \equiv \left[C_{\Gamma}(t)_{ij} = \sum_{\vec{x}} \langle \mathcal{O}_{\Gamma}(\vec{x}, t)_i \, \mathcal{O}_{\Gamma}^{\dagger}(\vec{0}, 0)_j \rangle \right] \quad i, j = 1, 2, \cdots, n$$

E.g. Gaussian smeared operators $\mathcal{O}_{\Gamma}(\vec{x},t)_{i} \equiv \sum_{\vec{y},\vec{z}} \omega_{i}(\vec{y})\omega_{i}(\vec{z})\bar{q}(\vec{x}+\vec{y},t)\Gamma q(\vec{x}+\vec{z},t) \quad \omega_{i}(\vec{x}) \equiv e^{-A_{i}||\vec{x}||^{2}}$

• Solve a generalized eigenvalue problem

$$\mathbf{C}_{\Gamma}(t) \mathbf{v}^{(k)} = \lambda_k(t; t_0) \mathbf{C}_{\Gamma}(t_0) \mathbf{v}^{(k)} \quad k = 1, 2, \cdots, n$$

H. Ohno KK60th

Variational analysis (cont'd)

• Mass spectra

$$\lambda_k(t;t0) = \frac{\cosh[m_k(t;t_0)(t - N_t/2)]}{\cosh[m_k(t;t_0)(t_0 - N_t/2)]}$$

• Bethe-Salpeter wave function

$$\Psi_k(\vec{r}; \vec{r}_0, t) = \frac{\sum_i A_i(\vec{r}, t) V_{ik}}{\sum_i A_i(\vec{r}_0, t) V_{ik}}$$

$$A_i(\vec{r}, t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}, t) \Gamma q(\vec{x} + \vec{r}, t) \mathcal{O}_{\Gamma}^{\dagger}(\vec{0}, 0)_i \rangle$$
$$\mathbf{V} = [\mathbf{v}^{(1)} \cdots \mathbf{v}^{(n)}]$$

• Spectral Weight

$$\rho_{\Gamma}(m_k(t;t_0)) = (\mathbf{C}_{\Gamma}(t_0)\mathbf{V})_{1k} (\mathbf{V}^{-1})_{k1} \frac{\sinh[m_k(t;t_0) N_t/2]}{\cosh[m_k(t;t_0) (t_0 - N_t/2)]}$$

Assuming that the (1,1)-component of the correlator matrix corresponds to the point source-point sink operator

H. Ohno KK60th

Lattice setup

- Standard plauette gauge & O(a)-improved Wilson quark actions
- In quenched QCD
- On anisotropic lattices $(a_{\sigma}/a_{\tau} = 4)$
- $\beta = 6.10 \ (\alpha_{\sigma} = 0.0970(5) \ \text{fm}, \ \alpha^{-1}_{\sigma} = 2.030(13) \ \text{MeV})$
- $N_{\sigma} = 20$ (, 16, 32)
- $N_{\tau} = 12, 16, 20, 26, 32 (, 160) (T = 0.88 2.3T_{c})$
- Quark mass has been tuned so that J/Ψ mass becomes almost equal to its experimental value

Mass spectra

Temperature and spatial BC dependence (Ve channel)

There seems to be no singal of scattering states up to $2.3T_c$.

H. Ohno KK60th

Wave function

Temperature dependence (Ve channel)

The ground state

The first excited state

n = 4 $20^3 \times N_t$ lattice

The wave functions of the ground and the first excited state keep their shapes up to 2.3 T_c .

Wave function (cont'd)

• Volume dependence at 2.3 $T_{\rm c}$ (Ve channel)

- Not sensitive to the volume
- Spatially localized even at T=2.3T_c for both ground state and 1st excited state
 - H. Ohno KK60th

Spectral function

KK60th

Ground state → all data almost consistent with experimental value 1st excited state → there is difference between variational method results and MEM results → variational method data get closer to experimental value as *n* increases It seems that variational method can improve data accuracy for excited states.

Spectral function (cont'd)

Temperature dependence (Ve channel, ground state) n = 7

No clear temperature dependence for the effective masses.

The spectral weight may change but the modification is quite small. There is no clear evidence of dissociation for J/ Ψ up to 1.4 T_c

H. Ohno KK60th

Summary on Part I

- Charmonia at finite temperature have been studied with a variational analysis in quenched lattice QCD.
 - Spatial boundary condition dependence of effective masses was investigated.
 - Temperature and volume dependences of wave function were also investigated.
 - Discrete spectral functions were constructed
 - There is no clear evidence of dissociation of charmonia up to 2.3T_c so far.

PART II Charmonia and bottomonia at finite temperature on large quenched lattices

HO, PoS LATTICE2013 (2014) 172 HO, H.-T. Ding and O. Kaczmarec, PoS LATTICE2014 (2014) 219

Simulation Setup

• Standard plauette gauge & O(a)-improved Wilson quark actions

•	In quenched QCD	β	N_{σ}	N_{τ}	T/T_c	# confs.
•	On fine and large isotropic lattices	7.192	96	48	0.7	259
•	T = 0.7 - 1.5T			32 28	1.1	476
•	Both charm & bottom			$\frac{28}{24}$	1.2 1.5	336
		7.793	192	96	0.7	69
				56	1.2	190
				48	1.5	210

β	$a [\mathrm{fm}]$	a^{-1} [GeV]	$\kappa_{ m charm}$	$\kappa_{\rm bottom}$	$m_{J/\Psi} \; [{\rm GeV}]$	$m_{\Upsilon} \; [\text{GeV}]$
7.192	0.0188	10.5	0.13194	0.12257	3.140(3)	9.574(3)
7.793	0.00942	20.9	0.13221	0.12798	3.175(5)	9.687(5)

The scale has been set by $r_0=0.49$ fm and with a formula for r_0/a in A. Francis, O. Kaczmarec, M. Laine, T. Neuhaus, HO, PRD 91 (2015) 9, 096002 Experimental values: $m_{J/\Psi} = 3.096.916(11) \text{ GeV}$, $m_Y = 9.46030(26) \text{ GeV}$ J. Beringer *et al.* [PDG], PRD 86 (2012) 010001

H. Ohno KK60th

Screening mass

H. Ohno KK60th

Reconstructed correlator

$$G_{\text{rec}}(\tau, T; T') \equiv \int_{0}^{\infty} d\omega \rho(\omega, T') K(\omega, \tau, T)$$
S. Datta *et al.*, PRD 69 (2004) 094507
If the spectral function doesn't vary with temperature

$$\frac{G(\tau, T)}{G_{\text{rec}}(\tau, T; T')} \quad \text{equals to unity at all } \tau$$

$$T=1.5T_{\text{c}}, T'=0.7T_{\text{c}}, V$$

$$1.18$$

$$\frac{\beta=7.192}{\beta=7.192}, \text{ charm}$$

$$\beta=7.192, \text{ bottom}$$

0.2

τT

0.3

$$\frac{\cosh[\omega(\tau - N_{\tau}/2)]}{\sinh[\omega N_{\tau}/2]} = \sum_{\substack{\tau' = \tau; \Delta \tau' = N_{\tau}}}^{N_{\tau}' - N_{\tau} + \tau} \frac{\cosh[\omega(\tau' - N_{\tau}'/2)]}{\sinh[\omega N_{\tau}'/2]}$$
$$T = 1/(N_{\tau}a) \qquad N_{\tau}' = mN_{\tau} \qquad m = 1, 2, 3, \cdots$$
$$G_{\text{rec}}(\tau, T; T') = \sum_{\substack{\tau' = \tilde{\tau}; \Delta \tau' = N_{\tau}}}^{N_{\tau}' - N_{\tau} + \tau} G(\tau', T')$$

There is strong modification at large τ/a , especially for charm.

Large $\tau \leftrightarrow$ Small ω

→ This strong modification might be related to the transport peak.

H. Ohno KK60th

0.1

0.98

0

0.5

0.4

Transport coefficients

H. Ohno KK60th

Transport coefficient (cont'd)

Ansatz:
$$\rho_{ii}^V(\omega \ll T) = 2\chi_{00}\frac{T}{M}\frac{\omega\eta}{\omega^2 + \eta^2}$$
 $\eta \equiv \frac{T}{MD}$ $M \equiv m_q a$

P. Petreczky and D. Teaney, PRD 73 (2006) 01458

Charm: $2\pi TD \approx 0.6 - 4$ ($\beta = 7.192$), $2\pi TD \approx 0.5 - 2$ ($\beta = 7.793$) for m_a = 1 - 2 GeV

Bottom: there is no intersection for $m_a = 4 - 5 \text{ GeV} \rightarrow D$ is infinitely large

H. Ohno KK60th

Summary on Part II

- We calculate meson correlation functions
 - on fine and large isotropic lattices
 - With 2 different cutoffs & quark masses for charm and bottom
- Screening masses
 - Increase monotonically as increasing temperature for V channel
 - Small temperature dependence for bottomonia
- Meson spectral functions are investigated in terms of reconstructed correlators
 - There is strong modification at large τ for V channel, which would be related to the transport peak.
 - From the difference between the ordinary and reconstructed correlation functions, the heavy quark diffusion constant is roughly estimated in the charm case.

Outlook

- Reconstruction of spectral functions
- Searching dissociation temperatures of quarkonia
- Estimating transport coefficients more accurately
- Taking continuum limit

金谷さん、還暦おめでとうございます。