

中村 宜文 理化学研究所 計算科学研究機構

2015年9月5日

「有限温度密度系の物理と格子QCDシミュレーション」研究会

共同研究者

- 金 暁勇 (アルゴンヌ国立研究所)
- 藏增 嘉伸(筑波大学/理化学研究所)
- 武田 真滋 (金沢大学/理化学研究所)
- 宇川 彰(理化学研究所)

- QCD の相図の概観
- phase diagram for $N_f = 3$, $\mu = 0$
 - Critical endpoint of finite temperature phase transition for three flavor QCD, Phys. Rev. D 91, 014508 (2015)
- phase diagram for $N_f = 3, \mu \neq 0$
 - Curvature of the critical line on the plane of quark chemical potential and pseudo scalar meson mass for three-flavor QCD, arXiv:1504.00113[hep-lat]

QCDの相図の概観

有限温度有限密度(物理点)

$3D \phi^4$ theory

strong $U(1)_A$ anomaly

weak $U(1)_A$ anomaly

Basile et al. (hep-lat/0509018)

Columbia plot (possible)

standard scenario

alternative scenario (weak $U(1)_A$ anomaly)

Kanaya (arXiv:1012.4247[hep-lat])

phase diagram for $N_f = 3$, $\mu = 0$

Motivation

 Critical endpoint (CEP) obtained with staggered and Wilson type fermions is inconsistent. → Results in the continuum limit is necessary

m_{π} at the endpoint at	$\mu = 0$ (bottom-left corner	of	Columbia	plot)
------------------------------	-------------	--------------------	----	----------	------	---

Nt	action	m ^E _π [MeV]	
4	unimproved staggered	260	de Forcrand,
6	unimproved staggered	150	Philipsen '07
4	p4-improved staggered	70	Karsch et al. '03
6	stout-improved staggered	≲ 50	Endrődi et al. '07
6	HISQ	≲ 50	Ding et al. '11,'15
4	unimproved Wilson	~ 1100	lwasaki et al. '96

- N_f = 3 study is a stepping stone
 - curvature of critical surface
 - to the physical point

We determine CEP on $m_l = m_s$ line with clover fermions in the continuum limit

Distinguishing between 1st, 2nd and crossover

criterion	first order	second order	crossover
distribution	double peak	single peak	singe peak
χ peak	$\propto N_l^d$	$\propto \mathbf{N}_{I}^{\gamma/\nu}$	-
$\beta(\chi_{\text{peak}}) - \beta_c$	∝ N , ^{−d}	$\propto N_{l}^{-1/\nu}$	-
kurtosis at $N_I \rightarrow \infty$	K= -2	-2 < K < 0	-

- scaling might work with wrong exponents near CEP
- peaks in histgram might emerge only at large N_i on weak 1st order
- K does not depend on volume at 2nd order phase transition point

$$M = N_{l}^{-\beta/\nu} f_{M}(tN_{l}^{1/\nu})$$

$$K + 3 = B_{4}(M) = \frac{N_{l}^{-4\beta/\nu} f_{M^{4}}(tN_{l}^{1/\nu})}{\left[N_{l}^{-2\beta/\nu} f_{M^{2}}(tN_{l}^{1/\nu})\right]^{2}} = f_{B}(tN_{l}^{1/\nu})$$

Method to determine CEP

- determine the transition point (peak position of susceptibility)
- determine kurtosis at transition point at each spatial lattice size
- find intersection point of kurtosis by fit, $K_{\rm E} + aN_{\rm L}^{1/\nu}(\beta \beta_{\rm E})$

- interpolate/extrapolate $\sqrt{t_0}m_{PS,t}$ measured at transition point to β_E
- extrapolate $\sqrt{t_0}m_{\rm PS,E}$ to the continuum limit
- use scale determined from Wilson flow $1/\sqrt{t_0} = 1.347(30)$ GeV [Borsanyi et al. '12]

Higher moments

i-th derivative of **In** *Z* with respect to control parameter *c*:

$$E = rac{\partial \ln Z}{\partial c}$$

Variance

$$V = \frac{\partial^2 \ln Z}{\partial c^2} = \sigma^2$$

Skewness (e.g. right-skewed → S > 0 , left-skewed → S < 0)

$$\mathbf{S} = \frac{1}{\sigma^3} \frac{\partial^3 \ln Z}{\partial c^3}$$

• Kurtosis(e.g. Gaussian $\rightarrow K = 0$, 2δ func. $\rightarrow K = -2$)

$$K = \frac{1}{\sigma^4} \frac{\partial^4 \ln Z}{\partial c^4} = B_4 - 3$$

13/40

Simulations

- action: Iwasaki gluon + N_f = 3 clover (non perturbative c_{SW}, degenerate)
- observables
 - gauge action density, G
 - plaquette, P
 - Polyakov loop, L
 - chiral condensate, Σ
 - and their higher moments
- temporal lattice size N_t = 4, 6, 8
 - statistics: O(100K) traj
- preliminary $N_t = 10$
 - statistics: O(1K) traj

plaquette at $\beta = 1.60$, $N_t = 4$

plaquette at $\beta = 1.65$, $N_t = 4$

Kurtosis intersection at $N_t = 4$

Kurtosis intersection at $N_t = 4$

γ/ν v.s. β

continuum extrapolation for $\sqrt{t_0}m_{PS,E}$

$$\begin{split} & : \sqrt{t_0} m_{PS}^{\text{phy;sym}} = \sqrt{t_0} \sqrt{(m_{\pi}^2 + 2m_{K}^2)/3} \sim 0.305 \\ & m_{\text{PS,E}} = 304(7)(14)(7) \text{ MeV} \end{split}$$

continuum extrapolation for $\sqrt{t_0}T_{\rm E}$

 $T_{\rm E} = 131(2)(1)(3) \; {
m MeV}$

Summary at *N*_t = 4, 6, 8

- kurtosis intersection analysis is consistent with χ_{max} analysis
- results at $N_t = 4$ is out of scaling region
- $\sqrt{t_0}m_{PS,E}$ in the continuum limit is smaller than the SU(3) sysmmetric point,

$$m_{\rm PS,E}/m_{\rm PS}^{\rm phys,sym} = 0.739(17)(34)(17)$$

• further studies at larger temporal sizes to obtain conclusive results are needed

Phys. Rev. D 91, 014508 (2015)

$\boldsymbol{\Sigma}$ at $\boldsymbol{N}_t = \mathbf{10}$ (1/3, preliminary)

Σ at $N_t = 10$ (2/3, preliminary)

 $\boldsymbol{\Sigma}$ at $\boldsymbol{N}_t = \mathbf{10}$ (3/3, preliminary)

continuum extrapolation and results at $N_t = 10$ (preliminary)

- assuming $\beta_{\rm E}=$ 1.78(1) at $N_t=$ 10
- excluding results at $N_t = 10$ from continuum extrapolation
- $T_{\rm E}$ would not change very much
- *m*_{PS,E} may become smaller than results at smaller *N_t*

Summary ($\mu = 0$)

We have investigated the critical endpoint of QCD with clover fermions and determined the critical endpoint by using the intersection points of the Binder cumulants and extrapolated to the continuum limit

• $T_{\rm E}$ in the continuum limit would not change very much

$T_{\rm E} pprox$ 130 MeV

*m*_{PS,E} in the continuum limit may become smaller than results at smaller *N*_t

$m_{ m PS,E} < 304(7)(14)(7) \text{ MeV?}$ $m_{ m PS,E}/m_{ m PS}^{ m phys,sym} < 0.739(17)(34)(17)?$

• we are doing further studies with high statistics at larger temporal sizes to obtain conclusive results

phase diagram for $N_f = 3, \mu \neq 0$

Motivation

de Forcrand and Philipsen (JHEP 0701:077,2007)

We investigate curvature

Finite density simulation

$$Z = \int DUe^{-S_g} (\det D(\mu))^{N_f} = \int DUe^{-S_g} |\det D(\mu)|^{N_f} e^{iN_f\theta}$$
$$= \int DUe^{-S_g} \det D^{\dagger}(\mu)^{N_f/2} \det D(\mu)^{N_f/2} e^{iN_f\theta}$$
$$= \int DUe^{-S_g} [\det D^{\dagger}(\mu)D(\mu)]^{N_f/2} e^{iN_f\theta}$$

• generate gauge field configurations with weight:

 $e^{-S_g + \ln \det[D^{\dagger}(\mu)D(\mu)]^{N_f/2}}$

- *a*µ = 0.1
- at $N_t = 6$, $N_l = 8$, 10, 12, $\beta = 1.70 1.77$
- statistics: O(10,000) O(100,000) traj.

Finite density simulation

• reweight with phase θ

$$\langle O \rangle = \frac{\langle O e^{i N_t \theta} \rangle}{\langle \cos(N_t \theta) \rangle}$$

• cost reduction to calculate θ : (but cost is still expensive, $O(n^3)$)

reweighting

We calculate

$$\begin{aligned} \frac{\det D_W(m'_0,\mu')}{\det D_W(m_0,\mu)} &= \exp\left[\ln\frac{\det D_W(m'_0,\mu')}{\det D_W(m_0,\mu)}\right] \\ &= \exp\left[\sum_{j,k=0}^{\infty} \frac{\Delta^j_{m_0} \Delta^k_{\mu}}{j!k!} \left(\frac{\partial}{\partial m_0}\right)^j \left(\frac{\partial}{\partial \mu}\right)^k \ln \det D_W(m_0,\mu) \right. \\ &- \ln \det D_W(m_0,\mu)\right] \end{aligned}$$

with

$$\Delta_{m_0} = m'_0 - m_0$$

 $\Delta_{\mu} = \mu' - \mu$

for the reweighting, where we use $m_0 = 1/(2\kappa) - 4$ to see easily mass derivative of **D**.

 χ and K

curvature

Summary

- We have investigated the critical endpoint of QCD with clover fermions
- We have determined the critical endpoint by using the intersection points of the Binder cumulants
- continuum extrapolation $a\mu = 0$

 $m_{PS,E} < 304(7)(14)(7) \text{ MeV}?$ $m_{PS,E}/m_{PS}^{phys,sym} < 0.739(17)(34)(17)?$

for *a*μ ≠ 0, we have found ∂*m*_E/∂μ > 0 at heavier quark mass

Backup slides

Columbia plot

· inconsistent results: Wilson and staggered type fermion

Finite temperature phase transition

- Plaquette v.s. κ at lowest β (= 1.60)
- no bulk phase transition

1st order phase transition and crossover (like)

 $\beta = 1.60$ and $\kappa = 0.14345$ on $10^3 \times 4$, clear two states, $K \sim -1.5$

 $\beta = 1.70$ and $\kappa = 0.13860$ on $10^3 \times 4$, one state, $K \sim -0.5$

Critical endpoint at $N_t = 6, 8$

