相関関数からみた クォーク・グルーオン・プラズマ: 金谷さんとの強相関

前澤 祐 (YITP)

有限温度密度系の物理と格子QCDシミュレーション、2015年9月5日

2003年4月 東大院·初田研

2003年 ペンタクォーク発見 🍑 修論:マルチクォーク模型

2004年 江尻さん: 初田研助教

D1: Lattice QCDゼミ: Creutz, Ukawa...

2005年4月 RHICで完全流体

D1: 2005年8月27日(土) 江尻さんとともに金谷さんを訪問

2004--5年 浮田さん、石井さん:初田研PD

2005年秋 WHOT-QCD発足

メンバー:青木慎也,江尻信司,初田哲男,石井理修, 金谷和至,谷口裕介,前澤祐,浮田尚哉

•••••• Talk @ LATTICE2006 July in Arizona

D3: 2008年3月博士論文

Polyakov loop correlations in quark-gluon plasma

from lattice QCD simulations

WHOT-QCD: Wilsonフェルミオンを用いたLattice QCDによる 有限温度・密度熱力学の解明、 CP-PACS, PACS-CSの結果を最大限に活かしたアプローチ

小生の計算: グルーオン相関関数

<u>Free energy at finite T and μ </u>

PRD75(2007)074501

PRD82(2010)014508

PTP128(2012)955

Electric and magnetic screening masses

PRD81(2010)091501(R)

WHOT-QCD: Wilsonフェルミオンを用いたLattice QCDによる 有限温度・密度熱力学の解明、 PACS-CSの結果を最大限に活かしたアプローチ

小生の計算: グルーオン相関関数

<u>Free energy at finite T and μ </u>

PRD75(2007)074501

PRD82(2010)014508

PTP128(2012)955

Electric and magnetic screening masses

PRD81(2010)091501(R)

WHOT-QCD: Wilsonフェルミオンを用いたLattice QCDによる 有限温度・密度熱力学の解明、 PACS-CSの結果を最大限に活かしたアプローチ

小生の計算: グルーオンの空間相関

Free energy at finite T and μ

PRD75(2007)074501

PRD82(2010)014508

A. Bazavov,¹ H.-T. Ding,^{1,2} P. Hegde,³ O. Kaczmarek,⁴ F. Karsch,^{1,4} E. Laermann,⁴ Y. Maezawa,¹ Swagato Mukherjee,¹ H. Ohno,⁴ P. Petreczky,¹ C. Schmidt,⁴ S. Sharma,⁴ W. Soeldner,⁵ and M. Wagner⁴
 ¹Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
 ²Physics Department, Columbia University, New York, New York 10027, USA
 ³Department of Physics R518, High Energy Physics Lab, National Taiwan University, Taipei 10617, Taiwan
 ⁴Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany
 ⁵Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

2011年10月 BNL, 2013年10月 Bielefeld BNL-Bielefeld-CCNU Coll. ∈ HotQCD Coll. 小生の計算:中間子の空間相関 2015年4月 YITPへ...

格子QCDによる 空間相関から迫る 中間子熱変化と壊れた対称性の回復

前澤祐 (YITP, Kyoto University)

in collaboration with

Frithjof Karsch (Universität Bielefeld, Brookhaven National Lab.) Swagato Mukherjee (Brookhaven National Lab.) Peter Petreczky (Brookhaven National Lab.)

Thermal fluctuation in QCD

Modifications of hadrons

sequential melting pattern of **quarkonium** and **open-flavor** mesons e.g. J/ψ suppression

Matsui and Satz (1986)

Restorations of broken symmetries

restored pattern of chiral and $U_A(1)$ symmetries the nature of phase transition

Pisarski and Wilczek (1984)

Theoretical understanding in lattice QCD simulations from spatial correlation functions

Previous: strange-charm PRD91 (2015) 5, 054503 This work: including up/down at widely T range

Hadronic excitation on LatticeTemporal correlation function: $G^T(\tau,T) = \int d^3x \langle J_H^{\dagger}(0,\mathbf{0}) J_H(\tau,\mathbf{x}) \rangle \xrightarrow{\tau \to \infty} Ae^{-m_0 \tau}$...difficult due to the limitation $\tau < 1/T$ Spatial correlation function: $G^S(z,T) = \int_0^{1/T} d\tau \int dx dy \langle J_H^{\dagger}(0,\mathbf{0}) J_H(\tau,\mathbf{x}) \rangle \xrightarrow{z \to \infty} Ae^{-M(T)z}$ M(T): screening mass

No limitation to spatial direction: more sensitive to in-medium modification

Hadronic excitation on LatticeTemporal correlation function: $G^T(\tau,T) = \int d^3x \langle J_H^{\dagger}(0,\mathbf{0}) J_H(\tau,\mathbf{x}) \rangle \xrightarrow{\tau \to \infty} Ae^{-m_0 \tau}$...difficult due to the limitation $\tau < 1/T$ Spatial correlation function: $G^S(z,T) = \int_0^{1/T} d\tau \int dx dy \langle J_H^{\dagger}(0,\mathbf{0}) J_H(\tau,\mathbf{x}) \rangle \xrightarrow{z \to \infty} Ae^{-M(T)z}$ M(T): screening mass

No limitation to spatial direction: more sensitive to in-medium modification

Spectral function

$$G^{T}(\tau,T) = \int_{0}^{\infty} d\omega \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} \sigma(\omega,T) \qquad \text{e.g.) reconstruction of } \sigma: \text{MEM}$$

$$G^{S}(z,T) = \int_{0}^{\infty} \frac{2d\omega}{\omega} \int_{-\infty}^{\infty} dp_{z} e^{ip_{z}z} \sigma(\omega, p_{z}, T)$$

No T dependence in Kernel: direct probe of thermal modification of σ $G^S(z,T)/G^S(z,T=0)$

Hadronic excitation on Lattice

Parity partner of meson states

Hadronic excitation on Lattice

Parity partner of meson states

Behavior in limiting cases:

At low *T*, bound state: $M(T) \sim m_0$ pole mass at T=0 $\sigma(\omega, 0, 0, p_z, T) \sim \delta(\omega^2 - p_z^2 - m_0^2)$

At $T \sim T_c$, in-medium modification and/or dissolution degeneracy of parity partner states

At $T\to\infty$, free quark-antiquark pair: $M\to 2\sqrt{m_q^2+(\pi T)^2}$ with the lowest Matsubara frequency

Lattice simulations

- Setup in HISQ
- Modifications of Mesons
- Restorations of broken symmetries

Highly Improved Staggered Quarks

Reduction of taste violation Control of cutoff effects

Bazavov et al. `11, Hot-QCD `11, `14

Lattice parameters

- 2+1 flavor QCD (charm quenched)
- m_s : physical, $m_1/m_s = 1/20$ ($m_{\pi} \sim 160$ MeV, $m_{K} \sim 504$ MeV)
- $N_{\tau} = 8$ (T = 110 207 MeV) 10 (T = 139 - 166 MeV) 12 (T = 149 - 400 MeV) keeping $N_{s}/N_{\tau} = 4$
- $32^4 48^3 \times 64$ at T = 0
- scale: f_k input
- calculating quark-line connected part of meson correlators

Mesons contents

Highly Improved Staggered Quarks

Reduction of taste violation Control of cutoff effects

Bazavov et al. `11, Hot-QCD `11, `14

Lattice parameters

- 2+1 flavor QCD (charm quenched)
- m_s : physical, $m_l/m_s = 1/20$

Mesons contents

Probe of thermal modifications of spectral function

Probe of thermal modifications of spectral function

Probe of thermal modifications of spectral function

• $G^{S}(z,T)/G^{S}(z,0) \neq 1$ at large distance \implies thermal modification of σ

• modification at $T < T_c$

Probe of thermal modifications of spectral function

• $G^{S}(z,T)/G^{S}(z,0) \neq 1$ at large distance \implies thermal modification of σ

• modification at $T < T_c$, explicit flavor dependence at $T > T_c$

Probe of thermal modifications of spectral function

• $G^S(z,T)/G^S(z,0) \neq 1$ at large distance \implies thermal modification of σ

• modification at $T < T_c$, explicit flavor dependence at $T > T_c$

Mass difference

Mass difference

Degeneracy of vector partners \implies restoration of chiral symmetry Degeneracy of scalar partners \implies (effective) restoration of $U_A(1)$ symmetry

• Scalar partner degenerates at $T \sim 1.4T_{c}$ --1.6 T_{c}

Degeneracy of vector partners \implies restoration of chiral symmetry Degeneracy of scalar partners \implies (effective) restoration of $U_A(1)$ symmetry

• Scalar partner degenerates at $T \sim 1.4T_{c}$ --1.6 T_{c}

Large distance behavior of spatial correlator $G^S(z,T) \xrightarrow{z \to \infty} Ae^{-M(T)z}$

• Scalar partner degenerates at $T \sim 1.4T_c$ --1.6 T_c

> chiral: restored, $U_A(1)$: broken at T_c , no dependence on lattice spacing

 \rightarrow chiral: restored, U_A(1): broken at T_c, no dependence on lattice spacing

Summary

In-medium mesons from spatial correlation function

- Sensitive to thermal effect at finite *T* on lattice
 - Direct probe of modification of meson spectral function
 - Indicator of restorations of broken symmetries

(2+1)-flavor QCD lattice simulations with HISQ of ratio: $G^S(z,T)/G^S(z,T=0)$, screening mass: $G^S(z,T) \xrightarrow{z \to \infty} Ae^{-M(T)z}$

- $u\bar{d}, u\bar{s}, u\bar{c}$: explicit thermal modification below T_c , similar modification pattern below T_c , explicit flavor dependence above T_c
- $sar{s},\ sar{c}$: slight modification below $T_{
 m c}$
- $C\overline{C}$: stable beyond T_c PRD91 (2015) 5, 054503
 - Degeneracies of parity partners
 - \blacktriangleright chiral: restored, U_A(1): broken at T_c

in continuum and physical quark mass (preliminary)