研究会「有限温度密度系の物理と格子QCDシミュレーション」 Experimental studies on Quark Gluon Plasma

ShinIchi Esumi

Center for Integrated Research in Fundamental Science and Engineering Inst. of Physics, Univ. of Tsukuba

江角 晋一

数理物質融合科学センター 筑波大学 数理物質系 物理学域

Hadronic Phase -> Partonic Phase

RHIC at BNL, $sqrt(s_{NN}) = 10 - 200 \text{ GeV/c}$ (New York, USA) LHC at CERN, $sqrt(s_{NN}) = 0.5 - 5.5 \text{ TeV/c}$ (Geneva, Switzerland)

ShinIchi Esumi, Univ. of Tsukuba

Nucleon or Quark participant scaling

History of temperature before/after the phase transition

Enhanced thermal photon production at low p_T

- Virtual and real photon measurements via internal and external conversion methods with electron pair measurements
- Real photon measurements with EMcal
- Initial temperature of 300~600MeV

- comparable to hadron for both v_2 and v_3 at 2~3GeV/c
- significant contribution from photons from later stages (inconsistent with early photons from hotter period)
- flatter p_T dependence of v₂ at low p_T

Elliptic flow with PID at RHIC and LHC

- High statistics measurements allow • a precise comparison of $v_2(p)$ and $v_2(\phi)$.
- Some small deviation from hydro-like mass dependence of v_2 at low p_T
- ϕ puzzle between peripheral and central at LHC

 πqq

op qqq

Anisotropy v₂

0.2

0.1

0

STAR, QM14 Transverse momentum p₁ (GeV/c)

Triangular expansion and shape

t=0.6fm

Elliptic and Triangular expansion : v_2 , v_3

Fluctuation of conserved quantities such as net-baryon, net-charge distribution

 10^{5}

 10^{4}

10

-20

-10

Events 10³ 10²

|y|<0.5

New data on net-proton distribution X. Luo, CPOD2014 0-5% Au + Au Central Collisions at RHIC (a) net-p $\kappa^* \sigma^2$ (b) net-p S^{*}σ 4 p_T Range (GeV/c) 8.0 $0.4 < p_{T} < 0.8$ (STAR: PRL112) 3 $0.4 < p_{T} < 1.2$ $\kappa^{*}\sigma^{2}$ 0.6 $0.4 < p_T < 1.4$ ь " С $0.4 < p_T < 1.6$ $0.4 < p_T < 2.0$ 2 0.4 p_T Range (GeV/c) $0.4 < p_T < 0.8$ (STAR: PRL112) 0.2 $0.4 < p_T < 1.2$ $\begin{array}{c} 0.4 < p_T^{'} < 1.4 \\ 0.4 < p_T^{'} < 1.6 \end{array}$ $0.4 < p_T < 2.0$ 0 0 20 200 10 20 50 100 200 10 50 100 5 5 Colliding Energy √s_{NN} (GeV)

Shutdown PHENIX detector after run16 (next year)

Beam Energy Scan Program II at RHIC-STAR

R. Vértesi, Dec/2014, 14. Zimányi Winter School

数理物質融合科学センター CiRfSE (サーフス)

筑波大学 数理物質系

Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba

Back-up slides