

PaNic02 Osaka 30 September 2002

Lattice QCD and Hadrons

Akira Ukawa Center for Computational Physics University of Tsukuba

overview

- □ hadron spectrum and fundamental constants of QCD
- topics in hadron physics
- □ issues and progress with chiral symmetry
- weak interactions of hadrons
- QCD thermodynamics
- conclusions

Center for computational Physics University of Tsukuba

- Founded in 1992
- Emphasis on
 - Development of HPC systems suitable for computational physics
 - Close collaboration of physicists and computer scientists
- Computing facility
 - CP-PACS parallel system
 - MPP with 2048PU/0.6Tflops peak
 - Developed at the Center with Hitachi Ltd.
 - #1 of Top500-November 1996
 - GRAPE-6 system
 - Dedicated to gravity calculations
 - Developed at U. Tokyo
 - 8Tflops equivalent

Quantum Chromodynamics (QCD)

Fundamental theory of quarks and gluons and their strong interactions

 Knowing 1 coupling constant and 6 quark masses will allow full understanding of strong interactions (Yukawa's dream)

Lattice QCD and numerical simulation

- Provides the mean for firstprinciples realization of the dream
- With computers instead of pencils in your hand

α_{s}

 $m_u, m_d, m_s, m_c, m_b, m_t$

$$S_{QCD} = \frac{1}{\alpha_s} \sum_{P} tr(UUUU) + \sum_{q} \overline{\psi} (\gamma \cdot U + m_q) \psi$$
$$\langle O(U, \overline{\psi}, \psi) \rangle = \frac{1}{Z} \int dU d\overline{\psi} d\psi O(U, \overline{\psi}, \psi) e^{-S}$$

Lattice QCD and PaNic2002

PaNic02 Plenary program			Finite-temperature/	
	Sep.30	dens	sity behavior	
	Quark confinement and deconfinement LOCD Oct.1 Nucleon structure and hadron interaction			
	Nuclear matter at high density	structure functions/ form factors		
	Oct.2			
	Flavored matter and astrophysics			
	Neutrino physics			
	Oct.3			
	Hadron physics with leptons and had	Iron physics with leptons and hadrons Icture functions of nucleon		
	Structure functions of nucleon			
	Oct.4			
	CP violation and rare K-decays			
	Precision frontier and beyond standard model			

Organization of this talk

- Hadron spectrum and fundamental constants of QCD
 - Fundamental verification of QCD at low energies
 - Determination of quark mass and strong coupling constant
- Topics in hadron physics
 - Nucleon structure functions
- Issues and progress with chiral symmetry
 - Chiral extrapolation of observables
 - Chirally symmetric fermion formulations
- Weak amplitudes of hadrons
 - K decays and CP violation
 - K and B meson amplitudes and constraints on the CKM matrix
- Finite temperature/density QCD
 - Status at zero density
 - Progress toward non-zero density

Light hadron mass spectrum

- Benchmark calculation to verify QCD
- Indispensable for determination of QCD scale and quark masses
- Essential to control various systematic errors down to a few % level
 - Finite lattice size L>3fm
 - Finite quark mass mq 0
 - Finite lattice spacing a 0

Experimental spectrum

- Sea quark effects ignored
- General pattern reproduced, but clear systematic deviation beyond 10% precision
- Completes the calculation started in '81 (Hamber-Parisi/Weingarten)

use m_{π}, m_{ρ} for fixing a and m_{ud} use m_{K} for fixing m_{s}

Calculated quenched spectrum

Input dependence in quenched QCD

Details of disagreement depends on input, but overall agreement not possible

> use m_K for fixing m_s use m_{ϕ} for fixing m_s

predictions in quenched
 QCD suffer from
 uncertainties depending
 on input

Calculated quenched spectrum

Strange quark mass in quenched QCD

 $m_{s}(\overline{MS}, 2GeV) = \begin{cases} 142^{+28}_{-6} MeV & \phi \text{ meson mass input} \\ 114^{+8}_{-6} MeV & K \text{ meson mass input} \end{cases}$

QCD simulation with dynamical quarks

Spectrum of quarks

- 3 light quarks (u,d,s)
 □ Need dynamical simulation
- 3 heavy quarks (c,b,t) □ Quenching sufficient
- Dynamical quark simulation (full QCD)
 - costs 100-1000 times more computing power
 - Algorithm for odd number of quarks now available
- Two-flavor full QCD

 $N_{f} = 2$

m < 1 GeV

m >1GeV

- u and d quark
 dynamical simulation
 s quark
 quenched approximation
- Number of studies: SESAM/UKQCD/MILC/CP-PACS/JLQCD
- $\square Two+one-flavor full QCD N_f = 2+1$

s quark also treated dynamically

Extensive studies have begun : MILC/CP-PACS-JLQCD

Sea quark effects in the spectrum

- K*-K and -K mass difference (Meson hyperfine splitting)
 - too small in quenched QCD
 - Much closer agreement for two-flavor full QCD

Sea quark effects in quark masses

Significant decrease by inclusion of sea quark effects
 Input dependence of strange quark mass also reduced

MS(2GeV)Light quark masses (u, d, s) m_a

Significant sea quark effects

- Large uncertainty (~20%) depending on input in quenched theory
- Sizable decrease (~25%)
 from quenched to two-flavor
 full QCD
- Lighter than naïve quark model values
- Nf=3 simulations being pursued to obtain physical values of light quark masses,

e.g., Hein et al hep-lat/0209077

Real world; three flavors?

Heavy quark masses (c, b)

Charm quark mass

- J. Rolf and S. Sint Lattice01
 - Fully non-perturbative determination in the continuum in quenched QCD

$$m_c^{\overline{MS}}(m_c) = 1.314(45)GeV$$

Bottom quark mass

- Not straightforward since $m_b > 1/a$
- Use

$$M_{B} = m_{b}^{pole} + \underbrace{E_{b}}_{binding \ energy}$$

$$\begin{cases} M_{B}, E_{B} & Monte \ Carlo \\ \delta m & pert. \ theory \end{cases}$$

G. Gimenez et al ('00)

 $m_{h}^{MS}(m_{h}) = 4.27(9)GeV$

radiative corrections

14

Strong coupling constant $\alpha_s(\mu)$

Another fundamental parameter of QCD

- Large number of high energy determinations from experiments
- Lattice determinations:

Method I (Lepage et al '91):

- Calculate short-distance observables as a function of $\alpha_s(1/a)$ at cutoff scale 1/a
- the scale 1/a is fixed from hadron mass
- Method II (Luescher et al '93)
 - Non-perturbative determination of the RG evolution by Shcrodinger functional finite-size technique

Scale dependence of $\alpha_s(\mu)$

M. Della Morte et al hep-lat/0209023

Non-perturbative determination by Alpha Collaboration for twoflavor full QCD (Lattice02)

Indicates perturbative evolution for p>a few GeV

Similar results for quenched QCD ('94)

Physical scale yet to be determined

Determination of $\alpha_s^{\overline{MS}} (M_z)^{N_f=5}$

Topics in hadron physics

- Progress in hadron spectroscopy
 - Eta' meson mass and U(1) problem
 - Glueballs
 - Multiquark states
 - Excited string states etc
- Hadron structure
 - Moments of nucleon structure functions
 - Form factors
- Hadron scattering amplitudes
 - Scattering length
 - Phase shift

Moments of nucleon structure functions (I)

Compiled in M. Goeckeler et al hep-lat/0209160

Moments of nucleon structure functions (II)

W. Detmold et al hep-lat/0103006

Moments of nucleon structure functions (II)

From D. Dolgov et al hep-lat/0201021

A general issue with chiral extrapolation

- Current lattice data often fails to see logarithmic singularity expected from chiral perturbation theory
- Often causes sizable (10-20%) uncertainties in the extrapolated result
- Pion mass in current simulations (~ 500MeV) too heavy; needs to be reduced
- Lattice fermion action with exact chiral symmetry much desired (conventional Wilson and KS action breaks chiral symmetry)

Lattice fermion with exact chiral symmetry

Theoretically based on the Ginsparg-Wilson relation:

 $D\gamma_5 + \gamma_5 D = 2aDR\gamma_5 D$

Domain-wall fermion Kaplan('92)/Furman-Shamir('94)
 Overlap formalism Neuberger-Narayanan('92,'97)
 Fixed point action Hasenfratz-Neidermyer('94)

- Avoids the Nielesen-Ninomiya Theorem by using "infinitely" many fields (hence needs more computer power)
- quenched calculations show very promising results: good chiral property, small scaling violation, ...

A test in quenched QCD

chiral logarithm behavior of pion mass in quenched QCD Sharpe/Bernard-Golterman '91

$$m_{\pi}^2 = Am_0(1 - \delta \ln m_0 + bm_0 + \cdots)$$

Nice confirmation with the new fermion formalism

- □ T. Draper et al : overlap fermion
- C. Gattringer et al : fixed point fermion

Reached very light pion mass

- $\square m_{\pi} \sim 170 \text{MeV} (T. \text{ Draper et al})$
- Similar results from other chiral formalisms

Weak amplitudes of hadrons

- First principles calculation of strong interaction corrections to weak amplitudes of hadrons
- Understand old and new issues in hadronic weak interactions
 - I=1/2 rule and direct CP violation in K decay
- Constraints on the CKM mixing matrix
 - Neutral K and B meson mixings
 - B meson decay form factors

QCD matrix element

- Crucial numbers to verify the Standard Model understanding of CP violation
- Chiral symmetry crucial because of the chiral structure of weak interactions
- Two large-scale calculations using domain-wall QCD
 - RIKEN-BNL-Columbia
 - CP-PACS

- T. Blum et al hep-lat/0110124
- J. Noaki et al hep-lat/0108013

- Reasonable agreement with experiment for I=2
- ☐ About half of experiment for I=0
- RIKEN-BNL-Columbia obtains a somewhat different result (smaller I=2 and larger I=0)

CP violation parameter ',

- Small and negative in disagreement with experiment
- Similar result from RIKEN-BNL-Columbia

- connected with insufficient enhancement of I=1/2 rule
- Method of calculation (K reduction) may have serious problems
- Still a big problem requiring further work

$$\frac{\varepsilon}{\varepsilon} = \frac{\omega}{\sqrt{2}|\varepsilon|} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right]$$

Constraints on the CKM matrix

QCD matrix element

$$K^{\circ} - \overline{K}^{\circ} \text{ mixing} \qquad \mathcal{E}_{K} \propto \overline{\eta} \left[(1 - \overline{\rho}) A + B \right]^{2} \hat{B}_{K}$$

$$\left\langle \overline{K}^{0} \left| \overline{s} \gamma_{\mu} (1 - \gamma_{5}) d \overline{s} \gamma_{\mu} (1 - \gamma_{5}) d \right| K^{0} \right\rangle = \frac{8}{3} f_{K}^{2} B_{K} M_{K}^{2}$$

$$B_{d,s}^{0} - \overline{B}_{d,s}^{0} mixing \qquad \Delta M_{B_{q}} \propto \left(\overline{\rho}^{2} + \overline{\eta}^{2}\right) f_{B_{q}}^{2} B_{B_{q}}$$

$$\left\langle \overline{B}_{q}^{o} \left| \overline{b} \gamma_{\mu} (1 - \gamma_{5}) q \, \overline{b} \gamma_{\mu} (1 - \gamma_{5}) q \right| B_{q}^{0} \right\rangle = \frac{8}{3} f_{B_{q}}^{2} B_{B_{q}} M_{B_{q}}^{2} \qquad \xi = \frac{f_{B_{s}}}{f_{B_{d}}} \sqrt{\frac{B_{B_{s}}}{B_{B_{d}}}}$$

Lattice results for B_K

- Previous best result obtained with conventional KS fermion action
- Recent Domain-wall results indicates a smaller value
- Full QCD calculation yet to be made with domain-wall fermion
- Current best estimate:

KS (non-invariant)
 KS (invariant)

DWF(CP-PACS)

$$B_K = 0.628(42) - 0.532(11)$$

CP-PACS hep-lat/0105020 RBC hep-lat/0110075

 $\hat{B}_{K} = 0.87^{+0.06}_{-0.13}$ RG-invariant B parameter

0.9

0.8

ø

1.0

- Two-flavor full QCD result begins to accumulate
- f_{B_d} : possibly large uncertainty due to chiral extrapolation
- Best estimate from two-flavor full QCD:

$$f_{B_d} = 198(30)_{-34}^{+0} MeV$$

$$f_{B_d} / f_{B_s} = 1.16(5)_{-0}^{+24}$$

N. Yamada at Lattice2002

Compilation by N. Yamada at Lattice02

- Still mostly quenched (only one calculation in full QCD)
- Sea quark effects small
- Uncertainty with chiral extrapolation is small
- Current best estimate:

$$B_{B_d} = 1.33(12)$$

$$B_{B_d} / B_{B_s} = 1.00(3)$$

N. Yamada at Lattice2002

Compilation by N. Yamada at Lattice02

Summary of lattice results for CKM matrix

$$\hat{B}_{K} = 0.87^{+0.06}_{-0.13}$$

$$f_{B_{d}} \sqrt{B_{B_{d}}} = 0.227(37)^{+0}_{-34} GeV$$

$$\xi = 1.16(5)^{+24}_{-0}$$

Cf. numbers used in the figure left

$$\hat{B}_{K} = 0.87^{+0.06}_{-0.13}$$
$$f_{B_{d}} \sqrt{B_{B_{d}}} = 0.227(28)GeV$$
$$\xi = 1.16^{+3}_{-5}$$

status 2002 http://www.ckmfitter.in2p3.fr/

Better control of chiral extrapolation needed

Finite temperature/density QCD

- **Status for T>0 and \mu=0**
 - Expected phase diagram
 - Recent results
- **D** Progress toward $\mu \neq 0$
 - Reweighting
 - Taylor expansion
 - Analytic continuation

Remarks

- Still mostly (improved) KS fermion action
- Still mostly Temporal size N_t=4-8

i.e., coarse lattice $a^{-1} \approx 0.6 - 1.2 GeV$

Phase diagram expected at $\mu=0$

Where is the physical point?

Nature of the 2nd order endline

- Existence of the endline well established JLQCD/Bielefeld/Columbia
- Binder cumulant test to distinguish universality class

$$B_{4} = \frac{\left\langle \left(\delta \overline{\psi} \psi \right)^{4} \right\rangle}{\left\langle \left(\delta \overline{\psi} \psi \right)^{2} \right\rangle^{2}}$$

Clear evidence of Ising universality as predicted by S. Gavin et al

S. Gavin et al hep-ph/9311350

$$m_{ud} = m_s = 0.015 - 0.045$$

Ch. Schmidt et al hep-lat/0209009

0.03

0.01

0.02

Cross-over at the physical point indicated with the KS fermion simulations

NB first-order with Wilson fermion; old controversy still remains

0.06

Progress with finite chemical potential

- □ Reweighting method to move from µ=0 to µ ≠ 0 Butapest (Fodor et al)
- Taylor expansion around μ=0
 Bielefeld-Swansea
- □ analytic continuation from Imµ ≠0 to Reµ≠0

Forcrand et al/Lombardo et al

Glasgow attempts ('92-'98) failed at T=0, but resurrected at T≠0 by Fodor-Katz

Schematic phase diagram (assuming cross-over at T=0)

O Reweighting in chemical potential μ

Fodor-Katz strategy

- Z.Fodor et al hep-lat/0104001
 - Reweight in β and μ such that width of ω is minimal
 - Turned out to work for small volume;

 $\mu a \leq \left(N_t \cdot N_s^3\right)^{-1/4}$

Use Lee-Yang zero analysis to locate the end-point E

O Taylor expansion in chemical potential μ

S. Ejiri et al heo-lat/0209012 C. R. Allton et al hep-lat/0204010

Taylor expansion should converge up to the endpoint $Tr \ln D(\mu) = Tr \ln D(\mu = 0) + Tr D(\mu = 0)^{-1} \frac{\partial D}{\partial \mu} (\mu = 0) \cdot \mu + \cdots$

600

O Analytic continuation from Imaginary to Real μ

- Determinant real for Imaginary μ, hence amenable to Monte Carlo
 M. Alford et al hep-lat/
- \Box Fit obervables in polynomials of μ
- Analytically continue in μ

M. Alford et al hep-lat/9807039 Ph. Forcrand et al hep-lat/020501 M. D'Elia et al hep-lat/0209146

Conclusions and prospects

- Visible shift from quenched to full QCD simulations
 - Important effects observed in physical observables
 - Crucial for consistent predictions from lattice QCD
- Development of lattice fermion with exact chiral symmetry
 - Both conceptual and practical advantages
 - Need O(10) times more computer power; awaits next generation of computers for full QCD
- Notable progress in
 - Study of finite chemical potential
- Require further effort to understand
 - K meson decays
- Expect substantial progress by the next PaNic onference with next negeration of computers
 - OCDOC/APENEXT
 - Development of clusters