Present and Future of Lattice QCD

Akira Ukawa
Center for Computational Physics
University of Tsukuba

- overview
- hadron spectrum and fundamental constants of QCD
- topics in hadron physics
- issues and progress with chiral symmetry
- weak interactions of hadrons
- QCD thermodynamics
- conclusions and prospects
Center for computational Physics
University of Tsukuba

- Founded in 1992
- Emphasis on
 - Development of HPC systems suitable for computational physics
 - Close collaboration of physicists and computer scientists

- Computing facility
 - CP-PACS parallel system
 - MPP with 2048PU/0.6Tflops peak
 - Developed at the Center with Hitachi Ltd.
 - #1 of Top500-November 1996
 - GRAPE-6 system
 - Dedicated to gravity calculations
 - Developed at U. Tokyo
 - 8Tflops equivalent
Quantum Chromodynamics

- Quantum Chromodynamics (QCD)
 - Fundamental theory of quarks and gluons and their strong interactions

\[S_{\text{QCD}} = \frac{1}{8\pi\alpha_s} \text{Tr}(F_{\mu\nu}F_{\mu\nu}) + \sum_f \bar{\psi}_f (\gamma_\mu (\partial_\mu - iA_\mu) + m_f)\psi_f \]

- Knowing

\[\langle O(A,\bar{\psi},\psi) \rangle = \frac{1}{Z} \int dA d\bar{\psi} d\psi O(A,\bar{\psi},\psi) e^{-S} \]

1 coupling constant
and
6 quark masses

\[m_u, m_d, m_s, m_c, m_b, m_t \]

will allow full understanding of strong interactions
“Yukawa’s dream (1935) in modern form”
QCD on a Lattice

- **Lattice QCD**
 - Powerful mean to calculate the QCD Feyman path integral
 \[S_{QCD} = \frac{1}{\alpha_s} \sum_p \text{tr}(UUUU) + \sum_f \bar{\psi}_f \left(\gamma \cdot U + m_f \right) \psi_f \]
 \[\langle O(U, \bar{\psi}, \psi) \rangle = \frac{1}{Z} \int dU d\bar{\psi} d\psi O(U, \bar{\psi}, \psi) e^{-s} \]

- **From computational point of view**
 - Relatively simple calculation
 - Uniform mesh
 - Single scale
 - Requires much computing power due to
 - 4-dim. Problem
 - Fermions essential
 - Physics is at lattice spacing a=0
 - Precision required(<a few % error in many cases)
Subjects of lattice QCD

Hadron spectrum and Fundamental constants of QCD
- Strong coupling constant
- Quark masses
 \[\alpha_s, m_u, m_d, m_s, m_c, m_b, m_t \]

Finite-temperature/density behavior
- Order of transition
- Critical temperature/density
- Equation of state

Physics of quark-gluon plasma

Hadron physics
- \(\eta' \) meson mass and U(1) problem
- Exotic states: glueball, dibaryon, hybrids, ...
- Hadronic matrix elements: proton spin, sigma term, ...
- Structure functions/form factors

\[\int_0^1 dx x^{n-1} F(x, q^2) = (\ln q^2)^{-\gamma_E} \langle N | \mathcal{O}_n | N \rangle \]

Weak interaction matrix elements
- \(B_K \) amplitudes
- \(K \to \pi \pi \) decays
- \(B \) meson amplitudes
 - \(f_B, B_B \), form factors

CKM matrix and CP violation
Physics subjects of this talk

- Hadron spectrum and fundamental constants of QCD
 - Fundamental verification of QCD at low energies
 - Determination of quark mass and strong coupling constant
- Topics in hadron physics
 - Nucleon structure functions
- Issues and progress with chiral symmetry
 - Chiral extrapolation of observables
 - Chirally symmetric fermion formulations
- Weak amplitudes of hadrons
 - K meson decays and CP violation
 - K and B meson amplitudes and constraints on the CKM matrix
- Finite temperature/density QCD
 - Status at zero density
 - Progress toward non-zero density
Light hadron mass spectrum

- Benchmark calculation to verify QCD
- Indispensable for determination of QCD scale and quark masses
- Essential to control various systematic errors down to a few % level
 - Finite lattice size \(L > 3 \text{fm} \)
 - Finite quark mass \(m_q \not= 0 \)
 - Finite lattice spacing \(a \not= 0 \)

![Experimental spectrum]
CP-PACS result for the quenched spectrum’98

- Sea quark effects ignored

- General pattern reproduced, but clear systematic deviation beyond 10% precision

- Completes the calculation started in ’81 (Hamber-Parisi/Weingarten)

\[\text{use } m_\pi, m_\rho \text{ for fixing } a \text{ and } m_{ud} \]
\[\text{use } m_K \text{ for fixing } m_s \]

Calculated quenched spectrum
Input dependence in quenched QCD

- Details of disagreement depends on input, but overall agreement not possible

 use m_K for fixing m_s
 use m_ϕ for fixing m_s

- Predictions in quenched QCD suffer from uncertainties depending on input

Calculated quenched spectrum
Strange quark mass in quenched QCD

- 25% discrepancy in the predicted value of strange quark mass

- Clearly illustrates
 - limitation of quenched QCD
 - necessity of full QCD with dynamical quarks

\[m_s(MS, 2GeV) = \begin{cases} 142_{-6}^{+28} & \text{MeV, } \phi \text{ meson mass input} \\ 114_{-6}^{+8} & \text{MeV, } K \text{ meson mass input} \end{cases} \]
QCD simulation with dynamical quarks

- Spectrum of quarks
 - 3 light quarks (u,d,s) $m < 1\text{GeV}$
 - Need dynamical simulation
 - 3 heavy quarks (c,b,t) $m > 1\text{GeV}$
 - Quenching sufficient

- Dynamical quark simulation (full QCD)
 - Costs 100-1000 times more computing power
 - Algorithm for odd number of quarks now available

- Two-flavor full QCD (since around 1996) $N_f = 2$
 - u and d quark dynamical simulation
 - s quark quenched approximation
 - Number of studies: SESAM/UKQCD/MILC/CP-PACS/JLQCD

- Three-flavor full QCD (since around 2000) $N_f = 2 + 1$
 - s quark also treated dynamically
 - Extensive studies have begun: MILC/CP-PACS-JLQCD
Sea quark effects in the spectrum

- K*-K and f0-K mass difference (Meson hyperfine splitting)
 - too small in quenched QCD
 - Much closer agreement for two-flavor full QCD
Sea quark effects in quark masses

- Significant decrease by inclusion of sea quark effects
- Input dependence of strange quark mass also reduced

up&down quark Quenched value strange quark

Two-flavor full QCD K-input
Light quark masses (u, d, s) $m_q^{\overline{MS}}(2\text{GeV})$

- **Significant sea quark effects**
 - Large uncertainty (~20%) depending on input in quenched theory
 - Sizable decrease (~25%) from quenched to two-flavor full QCD

- Lighter than naïve quark model values

- Nf=3 simulations being pursued to obtain physical values of light quark masses, e.g., Hein et al hep-lat/0209077

CP-PACS Collab. Hep-lat/0004010

Real world; three flavors?
Heavy quark masses (c, b)

- **Charm quark mass**
 - J. Rolf and S. Sint Lattice01
 - Fully non-perturbative determination in the continuum in quenched QCD

 \[m_c^{\overline{MS}}(m_c) = 1.314(45)\text{GeV} \]

- **Bottom quark mass**
 - Not straightforward since \(m_b > 1/a \)
 - Use

 \[M_B = m_b^{\text{pole}} + \left(\frac{E_B}{\delta m} \right) \]

 \(M_B, E_B \) Monte Carlo, \(\delta m \) pert. theory

 - G. Gimenez et al (’00) \(m_b^{\overline{MS}}(m_b) = 4.27(9)\text{GeV} \)
Strong coupling constant $\alpha_s(\mu)$

- Another fundamental parameter of QCD
- Large number of high energy determinations from experiments
- Lattice determinations:
 - Method I (Lepage et al ’91):
 - Calculate short-distance observables as a function of $\alpha_s(1/a)$ at cutoff scale 1/a
 - the scale 1/a is fixed from hadron mass
 - Method II (Luescher et al ’93)
 - Non-perturbative determination of the RG evolution by Schrodinger functional finite-size technique
Scale dependence of $\alpha_s(\mu)$

- Non-perturbative determination by Alpha Collaboration for two-flavor full QCD (Lattice02)
- Indicates perturbative evolution for $p > a$ few GeV
- Similar results for quenched QCD ('94)
- Physical scale yet to be determined

M. Della Morte et al hep-lat/0209023
Determination of $\alpha_s^{\overline{MS}}(M_Z)^{N_f=5}$

Comments

- Davies et al '97(hep-lat/9703010):
 Involved extrapolation of $N_f=0$(quenched) and $N_f=2$ data to $N_f=3$

- QCDSF-UKQCD '01(hep-lat/0103023)
 Continuum estimate with systematic $N_f=2$ simulations

- Davies et al '02(hep-lat/0209121):
 Preliminary result based on MILC $N_f=3$ configurations at $a=0.13\text{fm}$

Systematic $N_f=3$ full QCD determination expected in a few years
Topics in hadron physics

- Progress in hadron spectroscopy
 - Eta’ meson mass and U(1) problem
 - Glueballs
 - Multiquark states
 - Excited string states etc

- Hadron structure
 - Moments of nucleon structure functions
 - Form factors

- Hadron scattering amplitudes
 - Scattering length
 - Phase shift $I=2 \, \pi\pi$ channel Ishizuka et al. 2002
Moments of nucleon structure functions (I)

\[
\int_0^1 dx x^{n-1} F(x, q^2) = (\ln q^2)^{-\gamma_n} \langle N | O_n | N \rangle \quad \langle x \rangle_{u-d}
\]

- A number of calculations
 - QCDSF (quenched)'96
 - Alpha(quenched)'98
 - QCDSF+UKQCD (full)'01-'02
 - LHPC+SESAM (full)'02

- No large sea quark effects observed for non-singlet moments

- No large scaling violation

- Lattice predictions do not agree with experiment

Compiled in M. Goeckeler et al hep-lat/0209160
Moments of nucleon structure functions (II)

- **Linear chiral extrapolation misses experiment**

- **Possible reasons:**
 - Quenching? No
 - O(a) error? No
 - Chiral extrapolation itself?

- **Chiral perturbation theory:**

\[
\langle x^n \rangle = a_n \left(1 - \frac{3g_A^2 + 1}{(4\pi f)^2} m^2 \ln \frac{m^2}{\Lambda^2} + cm^2 \right)
\]

- Pion not light enough to see curvature?
- An effective model can reproduce experiment

\[
\begin{pmatrix}
\langle x \rangle_{u-d}
\end{pmatrix}
\]

From D. Dolgov et al hep-lat/0201021

\[
\begin{pmatrix}
W. Detmold et al hep-lat/0103006
\end{pmatrix}
\]
Moments of nucleon structure functions (II)

- **Linear chiral extrapolation misses experiment**
- Possible reasons:
 - Quenching? No
 - O(a) error? No
 - Chiral extrapolation itself?
- **Chiral perturbation theory:**
 \[\langle x^n \rangle = a_n \left(1 - \frac{3g_A^2 + 1}{(4\pi f)^2} m_\pi^2 \ln \frac{m_\pi^2}{\Lambda_\chi^2} + cm_\pi^2 \ldots \right) \]
 - Pion not light enough to see curvature?
 - An effective model can reproduce experiment

From D. Dolgov et al hep-lat/0201021

\[\langle x \rangle_{u-d} \]

\[m_\pi^2 \]

W. Detmold et al hep-lat/0103006
A general issue with chiral extrapolation

- Current lattice data often fails to see logarithmic singularity expected from chiral perturbation theory
- Often causes sizable (10-20%) uncertainties in the extrapolated result
- Pion mass in current simulations (~500MeV) too heavy; needs to be reduced
- Lattice fermion action with exact chiral symmetry much desired (conventional Wilson and KS action breaks chiral symmetry)
Lattice fermion with exact chiral symmetry

- Theoretically based on the Ginsparg-Wilson relation:
 \[D\gamma_5 + \gamma_5 D = 2aDR\gamma_5 D \]
 - Domain-wall fermion Kaplan('92)/Furman-Shamir('94)
 - Overlap formalism Neuberger-Narayanan('92,'97)
 - Fixed point action Hasenfratz-Neidermyer('94)

- Avoids the Nieslen-Ninomiya Theorem by using “infinitely” many fields (hence needs more computer power)

- Quenched calculations show very promising results: good chiral property, small scaling violation, …
A test in quenched QCD

- Chiral logarithm behavior of pion mass in quenched QCD
 Sharpe/Bernard-Golterman ’91

\[m_\pi^2 = A m_0 \left(1 - \delta \ln m_0 + b m_0 + \cdots \right) \]

- Nice confirmation with the new fermion formalism
 - T. Draper et al : overlap fermion
 - C. Gattringer et al : fixed point fermion

- Reached very light pion mass
 - \(m_\pi \sim 170 \text{MeV} \) (T. Draper et al)
 - Similar results from other chiral formalisms

\[\delta = 0.26(3) \]

T. Draper et al hep-lat/0208045
Subjects of lattice QCD

Hadron spectrum and Fundamental constanst of QCD

- Strong coupling constant
- Quark masses
 \(\alpha_s \)

\(m_u, m_d, m_s, m_c, m_b, m_t \)

Finite-temperature/ density behavior

- order of transition
- critical temperature/density
- equation of state

Physics of quark-gluon plasma

Weak interaction matrix elements

- K meson amplitudes
 \(B_K \)
 \(K \to \pi \pi \) decays
- B meson amplitudes
 \(f_B, B_B \), form factors

CKM matrix and CP violation

\[\int_0^1 \! dx x^{n-1} F(x, q^2) = \left(\ln q^2 \right)^{\gamma_n} \langle N | \mathcal{O}_n | N \rangle \]
Weak amplitudes of hadrons

- First principles calculation of strong interaction corrections to weak amplitudes of hadrons
- Understand old and new issues in hadronic weak interactions
 - $I=1/2$ rule and direct CP violation in $K \to \pi\pi\pi$ decay
- Constraints on the CKM mixing matrix
 - Neutral K and B meson mixings
 - B meson decay form factors

$$\text{Measured weak amplitude} = \text{Known factor including CKM matrix} \times \langle h'|H_{weak}|h \rangle$$

QCD matrix element
I=1/2 rule and CP violation in K decays

- Weak interaction decays of K mesons
 \[\frac{\text{Re} A_0(K \rightarrow \pi\pi (I = 0))}{\text{Re} A_2(K \rightarrow \pi\pi (I = 2))} \approx 22 \]
 - I=1/2 rule

- CP violation
 \[\frac{\varepsilon'}{\varepsilon} = \begin{cases} (20.7 \pm 2.8) \times 10^{-3} & \text{KTeV experiment (FNAL)} \\ (15.3 \pm 2.6) \times 10^{-3} & \text{NA48 experiment (CERN)} \end{cases} \]

- Crucial numbers to verify the Standard Model understanding of CP violation

- Chiral symmetry crucial because of the chiral structure of weak interactions

- Two large-scale calculations using domain-wall QCD
 - RIKEN-BNL-Columbia: T. Blum et al. hep-lat/0110124
 - CP-PACS: J. Noaki et al. hep-lat/0108013
I=1/2 rule

- Reasonable agreement with experiment for I=2
- About half of experiment for I=0
- RIKEN-BNL-Columbia obtains a somewhat different result (smaller I=2 and larger I=0)
CP violation parameter ϵ'/ϵ

- Small and negative in disagreement with experiment
- Similar result from RIKEN-BNL-Columbia

Possible reasons
- connected with insufficient enhancement of $I=1/2$ rule
- Method of calculation (K $\rightarrow \pi$ reduction) may have serious problems

Still a big problem requiring further work
Constraints on the CKM matrix

\[\text{Measured weak amplitude} = \text{Known factor including CKM matrix} \times \left\langle h' | H_{\text{weak}} | h \right\rangle \]

- **\(K^0 - \bar{K}^0 \) mixing**
 \[\epsilon_K \propto \eta \left((1 - \rho)A + B \right)^2 \hat{B}_K \]
 \[\left\langle K^0 | \bar{s} \gamma_\mu (1 - \gamma_5) d \bar{s} \gamma_\mu (1 - \gamma_5) d | K^0 \right\rangle = \frac{8}{3} f_K^2 B_K M_K^2 \]
 \[\rightarrow B_K \]

- **\(B_{d,s}^0 - \bar{B}_{d,s}^0 \) mixing**
 \[\Delta M_{B_q} \propto \left(\rho^2 + \eta^2 \right) f_{B_q}^2 B_{B_q} \]
 \[\left\langle B_q^0 | \bar{b} \gamma_\mu (1 - \gamma_5) q \bar{b} \gamma_\mu (1 - \gamma_5) q | B_q^0 \right\rangle = \frac{8}{3} f_{B_q}^2 B_{B_q} M_{B_q}^2 \]
 \[\xi = \frac{f_{B_s}}{f_{B_d}} \sqrt{\frac{B_{B_s}}{B_{B_d}}} \]
 \[\rightarrow B_B \quad f_B \]
Lattice results for B_K

- Previous best result obtained with conventional KS fermion action
- Recent Domain-wall results indicates a smaller value
- Full QCD calculation yet to be made with domain-wall fermion
- Current best estimate:

$$B_K = 0.628(42) - 0.532(11)$$

$\hat{B}_K = 0.87^{+0.06}_{-0.13}$

RG-invariant B parameter

CP-PACS hep-lat/0105020
RBC hep-lat/0110075
Full QCD results for f_B

- Two-flavor full QCD result begins to accumulate
- f_{B_d}: possibly large uncertainty due to chiral extrapolation
- Best estimate from two-flavor full QCD:

 $f_{B_d} = 198(30)^{+0}_{-34}\text{ MeV}$

 $f_{B_d} / f_{B_s} = 1.16(5)^{+24}_{-0}$

 N. Yamada at Lattice2002
Results for B_B

- Still mostly quenched (only one calculation in full QCD)
- Sea quark effects small
- Uncertainty with chiral extrapolation is small
- Current best estimate:

$$B_{B_d} = 1.33(12)$$

$$B_{B_d} / B_{B_s} = 1.00(3)$$

N. Yamada at Lattice2002
Summary of lattice results for CKM matrix

\[
\hat{B}_K = 0.87^{+0.06}_{-0.13}
\]
\[
f_{B_d} \sqrt{B_{B_d}} = 0.227(37)^{+0}_{-34} \text{GeV}
\]
\[
\xi = 1.16(5)^{+24}_{-0}
\]

Cf. numbers used in the figure left

\[
\hat{B}_K = 0.87^{+0.06}_{-0.13}
\]
\[
f_{B_d} \sqrt{B_{B_d}} = 0.227(28) \text{GeV}
\]
\[
\xi = 1.16^{+3}_{-5}
\]

Better control of chiral extrapolation needed

status 2002 http://www.ckmfitter.in2p3.fr/
Subjects of lattice QCD

Hadron spectrum and Fundamental constants of QCD

- Strong coupling constant
- Quark masses

\[\alpha_s, m_u, m_d, m_s, m_c, m_b, m_t \]

Finite-temperature/density behavior

- order of transition
- critical temperature/density
- equation of state

Physics of quark-gluon plasma

Hadron physics

- eta’ meson mass and U(1) problem
- exotic states
 - glueball, dibaryon, hybrids, ...
- hadronic matrix elements
 - proton spin, sigma term, ...
- structure functions/form factors

\[\int_0^1 dx x^{n-1} F(x, q^2) = \left(\ln q^2 \right)^{-n} \langle N | O_n | N \rangle \]

Weak interaction matrix elements

- K meson amplitudes
 - \(B_K \)
 - \(K \to \pi\pi \) decays
- B meson amplitudes
 - \(f_B, B_B \), form factors

CKM matrix and CP violation
Finite temperature/density QCD

- Status for $T>0$ and $\mu=0$
 - Expected phase diagram
 - Recent results

- Progress toward $\mu \neq 0$
 - Reweighting
 - Taylor expansion
 - Analytic continuation

Remarks
- Still mostly (improved) KS fermion action
- Still mostly Temporal size $N_t=4-8$
 i.e., coarse lattice $a^{-1} \approx 0.6-1.2 GeV$
Phase diagram expected at $\mu=0$

$N_f = 2 + 1 \, QCD$

Tricritical point

$m_{ud} \propto (m^*_s - m_s)^{5/2}$

D=3 Z(3) Potts universality

Second-order

D=3 Ising universality

Where is the physical point?
Nature of the 2nd order endline

- Existence of the endline well established
 - JLQCD/Bielefeld/Columbia
- Binder cumulant test to distinguish universality class
 \[B_4 = \frac{\langle (\delta \bar{\psi} \psi)^4 \rangle}{\langle (\delta \bar{\psi} \psi)^2 \rangle^2} \]
- Clear evidence of Ising universality as predicted by S. Gavin et al
 - S. Gavin et al hep-ph/9311350
 - Karsch et al hep-lat/0107020
Location of the physical point

- Previous work by JLQCD/Columbia
- Recent work by
 - Schmidt (Bielefeld - Swansea)
 - Christ (Columbia)

Cross-over at the physical point indicated with the KS fermion simulations

NB first-order with Wilson fermion; old controversy still remains

Ch. Schmidt et al hep-lat/0209009
Progress with finite chemical potential

- Difficulties with finite density:
 - Monte Carlo methods fail for complex quark determinant for \(\mu \neq 0 \)

- New developments:
 - Reweighting method to move from \(\mu=0 \) to \(\mu \neq 0 \)
 - Budapest (Fodor et al)
 - Taylor expansion around \(\mu=0 \)
 - Bielefeld-Swansea
 - Analytic continuation from \(\text{Im} \mu \neq 0 \) to \(\text{Re} \mu \neq 0 \)
 - Forcrand et al/Lombardo et al

Schematic phase diagram
(assuming cross-over at \(T=0 \))
Reweighting in chemical potential μ

- Fodor-Katz strategy
 - Z. Fodor et al. hep-lat/0104001
 - Reweight in β and μ such that width of ω is minimal
 - Turned out to work for small volume:
 $$\mu a \leq \left(N_t \cdot N_s^3 \right)^{-1/4}$$
 - Use Lee-Yang zero analysis to locate the end-point E

From Fodor et al. hep-lat/0208078
Results

- End point:
 \[T_E = 160+/-3.5 \text{ MeV} \]
 \[\mu_E = 725+/-35 \text{ MeV} \]
 \[NF=2+1 \]
 \[[m_{ud}=0.025, m_s=0.2] \]
 \[(4, 6, 8)^3\times4 \]
 Z. Fodor et al hep-lat/0106002

- Equation of state
 Pressure \(p \)
 Energy density \(e \)
 \[NF=2+1 \]
 \[[m_{ud}=0.025, m_s=0.2] \]
 \[(8, 10, 12)^3\times4 \]
 Z. Fodor et al hep-lat/0208078
Taylor expansion in chemical potential μ

- Taylor expansion should converge up to the endpoint
 $$Tr \ln D(\mu) = Tr \ln D(\mu = 0) + Tr D(\mu = 0)^{-1} \frac{dD}{d\mu}(\mu = 0) \cdot \mu + \cdots$$

- Calculate
 $$\left. \frac{d^2 \beta_c(\mu)}{d\mu^2} \right|_{\mu=0} \Rightarrow \left. \frac{d^2 T_c(\mu)}{d\mu^2} \right|_{\mu=0}$$

- Simulation
 - P4-improved KS
 - $N_f=2$ [$m_{ud}=0.01, 0.02$]
 - $16^3 \times 4$
Analytic continuation from Imaginary to Real μ

- Determinant real for Imaginary μ, hence amenable to Monte Carlo
- Fit observables in polynomials of μ
- Analytically continue in μ

From Ph. Forcrand et al hep-lat/0205016
Future direction of lattice QCD

- From 2-flavor QCD to 3-flavor QCD
 - Dynamical treatment of all light quarks (u, d, s)
 - “Light” light quarks
 - Non-perturbative improvement coefficients and renormalization factors

- From non-chiral to chiral action for quark
 - Domain-wall/overlap/perfect actions

Truly realistic and exact simulation of QCD

- Polynomial HMC algorithm

\[
\frac{m_\pi}{m_\rho} \approx 0.6 \ (m_\pi \approx 500\text{MeV})
\]

\[
\Rightarrow \frac{m_\pi}{m_\rho} \approx 0.4 \ (m_\pi \approx 300\text{MeV})
\]
Scale of QCD simulations

- **Typical lattice size**
 - Quenched QCD 64^3x112
 - 2-flavor Full QCD 24^3x48

- **Total CPU time with CP-PACS**
 - 0.6Tflops peak
 - 53% of peak for quenched QCD (0.32Tflops effective)
 - 34% of peak for 2-flavor full QCD (0.20Tflops effective)
 - Quenched QCD 199 days of full machine
 - 2-flavor full QCD 415 days of full machine
 - K decay 180 days of full machine

- **Scaling law for 2-flavor QCD**

\[
#\text{FLOPS} = C \cdot \left[\frac{\text{#conf}}{1000} \right] \cdot \left(\frac{m_\pi}{m_\rho} \right)^{-6} \cdot \left(\frac{L}{3 \text{fm}} \right)^5 \cdot \left(\frac{1/a}{2 \text{GeV}} \right)^7 \text{ Tflops} \cdot \text{year}
\]

\[C \approx 2.8\]
Prospects with Computers

The table below summarizes the peak performance of various supercomputers and their corresponding years:

<table>
<thead>
<tr>
<th>Year</th>
<th>Machine</th>
<th>Peak Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-90</td>
<td>Columbia</td>
<td>16 GFLOPS</td>
</tr>
<tr>
<td>89-90</td>
<td>QCDPAX</td>
<td>14 GFLOPS</td>
</tr>
<tr>
<td>91</td>
<td>GF11</td>
<td>11 GFLOPS</td>
</tr>
<tr>
<td>88-94</td>
<td>APE / APE-100</td>
<td>25 GFLOPS</td>
</tr>
<tr>
<td>89-93</td>
<td>ACPMAPS</td>
<td>50 GFLOPS</td>
</tr>
<tr>
<td>96</td>
<td>CP-PACS</td>
<td>614 GFLOPS</td>
</tr>
<tr>
<td>98-99</td>
<td>QCDSP</td>
<td>410, 600</td>
</tr>
<tr>
<td>00-01</td>
<td>APEmille</td>
<td>520 GFLOPS</td>
</tr>
<tr>
<td>03?</td>
<td>QCDOC</td>
<td>10 TFLOPS?</td>
</tr>
<tr>
<td>03?</td>
<td>apeNEXT</td>
<td>10 TFLOPS?</td>
</tr>
</tbody>
</table>

Diagram

- **CP-PACS (1996)**: 614 GFLOPS
- **QCDPAX (1990)**: 14 GFLOPS
- **Columbia (1990)**: 16 GFLOPS
- **QCDSP (1998)**: 600 GFLOPS
- **APEmille (2000)**: 520 FLOPS
- **APE-100 (1994)**: 25 FLOPS
- **GF11 (1991)**: 11 GFLOPS

Additional Notes
- Prospects with computers suggest an upward trend in computational power, indicating advancements in technology and parallel computing capabilities.
Prospects toward 3-flavor simulations

- Polynomial HMC algorithm

- Assumption for Scaling law for 3-flavor QCD
 - FLOPS = 1.5*(2-flavor case)

- $O(5-10) \text{Tflops}$ computer needed for $L=2.4 \text{fm}$ simulations

QCDOC/apeNEXT (fall 2003) machines well suited for the job
Worldwide prospects

- Regional developments and competition
 - Asia-Pacific Mini-Workshop on lattice QCD (23-24 Jan 03)
 China/Taiwan/Korea/Australia/Japan/

- International collaboration
 - Sharing of resources
 - International Workshop on Lattice Data Grid (19-20 Dec 02)
 - Exchange of people
Conclusions

- Visible shift from quenched to full QCD simulations with dynamical quarks
 - Important effects observed in physical observables
 - Crucial for consistent predictions from lattice QCD

- Development of lattice fermion with exact chiral symmetry
 - Both conceptual and practical advantages
 - Need O(10) times more computer power; awaits next generation of computers for full QCD

- Notable progress in
 - Study of finite chemical potential

- Require further effort to understand
 - K meson decays
Prospects

- Full QCD simulations with dynamical up, down and strange quark
 - Already underway with staggered quark action
 - Simulations with Wilson quark action will follow

- Definitive prospect toward exact QCD predictions with realistic quark spectrum over the next few years
 - Firm numbers to our phenomenology/experiment colleagues
 - Quantitative understanding of the full range of strong interactions

1935 meson theory (Yukawa)
1951 strangeness (Gell-Mann-Nishijima)
1961 chiral symmetry and pion (Nambu-Jona-Lasinio)
1973 QCD and asymptotic freedom (Gross-Wilczek-Politzer)
1974 Lattice QCD (Wilson)
1981 Monte Carlo simulation of QCD (Creutz-Jacobs-Rebbi)