

.素粒子の世界

- .素粒子と計算機
- . CP PACSによる格子QCD計算
- . 将来への展望

宇川 彰 筑波大学物理学系 計算物理学研究センター

そりゅうし【素粒子】(elementary particle): 物質または場を構成する究極の単位物質。陽子・中性 子・電子・陽電子・中性微子・光子などがあり、それ ぞれ質量・スピン・荷電等によって特徴付けられる。 素粒子の間には相互作用が働き、その結果相互転化が 行われる。

広辞苑第二版補訂版(昭和44年)

- 理論的研究 紙と鉛筆
- 計算物理的研究 : スーパーコンピュータ
- 実験的研究 .

、素粒子の世界

素粒子加速器

物質の構成要素の階層構造と大きさの尺度

、素粒子の世界

素粒子を特徴付ける性質

素粒子の世界を支配する物理定数

・光速 $c = 299,792,458 \, m/\sec$ 相対性理論・プランク定数 $\hbar = 1.054,572,766(63) \times 10^{-34} J \cdot \sec$ 量子力学

質量とエネルギー

Einsteinの関係式 $E = mc^2$ 1.7826×10⁻²⁴ g ⇔ 1 GeV = 10⁹ eV

ハドロンのク	ォーク模型		<i>. 素粒子の世界</i>					
『ハドロンはより基本的なクォークからできてい								
る 』 ・バリオン	3個の	クォーク						
・メソン	クォー	・クと反クォーク	ル パイ中間子					
クォークの種	類							
U up	<i>C</i> charm	t top	Q = +2e/3					
d	S	b	Q = -e/3					
down	strange	bottom						
	\rightarrow	質量大						
$m_{u,d} \approx 5 MeV$		$m_{top} \approx 174G$	SeV					

.素粒子の世界

全ての粒子

素粒子の相互作用

『素粒子の間に働く力は特別な素粒子の交換によ Зл 湯川秀樹(1935) 荷電粒子 荷電粒子 +e-e光子の交換 電磁気的な力(電磁相互作用) • 媒介粒子 力を受ける粒子 電磁相互作用 荷電粒子 光子 ウィークボゾン クォーク・レプトン 弱い相互作用 強い相互作用 グルオン クォーク

■ 重力相互作用

•

.

グラビトン

素粒子とその相互作用の数学的記述

二つの基本原理

- 量子力学 粒子は波の性質を持つ
- 相対性理論 時間と空間の同等性
- → 4次元の時間・空間の各点に定義された 「場」 $\psi(t,x,y,z)$ による素粒子の記述 $\psi(t,x,y,z)$

$$\psi(t, x, y, z)$$
• (t, x, y, z)
y

素粒子とその相互作用の標準理論

物質粒子 • クォーク $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} s \\ c \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$ • レプトン $\begin{pmatrix} e \\ v_e \end{pmatrix} \begin{pmatrix} \mu \\ v_\mu \end{pmatrix} \begin{pmatrix} \tau \\ v_\tau \end{pmatrix}$

ゲージ粒子(力の媒介粒子)

- 光子
 γ
 電磁相互作用
- ウィークボゾン W, Z 弱い相互作用

グルオン
 g 強い相互作用

Weinberg - Salam理論

量子色力学 QCD

.素粒子と計算機

.素粒子と計算機

ハドロンの強い相互作用と量子色力学

- 計算物理学としての格子量子色力学
- 専用並列計算機の系譜

ハドロンの強い相互作用と量子色力学

クォークの力学の不思議

- ハドロンはクォークからなる
- 単独のクォークは発見されていない

-----> クォークの閉じ込め

量子色力学 Quantum Chromodynamics (QCD) • クォーク場 色電荷(3種類)と香り(6種 類)

・ グルオン場 色電磁線 種類 由度とする場の理論

Gross-Wilczek, Politzer (1973)

時空格子上の量子色力学

格子上にクォーク場・ グルオン場を定義

作用

物理量

分配関数

 $\langle O(\phi) \rangle = \frac{1}{Z} \int \prod d\phi_n \ O(\phi) \ e^{-S(\phi_n)}$

作用を重みとする多重積分平均

格子量子色力学の方法と目標

モンテ・カルロ法による多重積分の数値計算

■ QCDの第一原理に基づくクォークの力学の解明

•クォークの閉じ込めの理解

•ハドロンの諸性質の導出

新たな予言の抽出

計算物理学としての特徴

- 大次元の複素数配列が基本変数 L^4 格子での自由度数 クォーク場 q_n L^4 個の12次元複素ベクトル $12 \cdot L^4$ グルオン場 $U_{n\mu}$ $4 \cdot L^4$ 個の3x3複素行列 $36 \cdot L^4$

> 64³×112格子(現在までの世界最大サイズ: CP-PACS) クォーク 5.25GB グルオン場 15.75GB 補助変数を含めると 約100GB

モンテ・カルロ計算
 計算精度は独立サンプル数Nの ^{~ 1}/_{√N}
 64³×112 格子での計算
 CP-PACS (614GFLOPS)で約3ヶ月(サンプル数150)

.素粒子と計算機

■ グルオン場の基本演算

隣接する3個の3x3複素行列の積の格子全体にわたる繰り返し U_2 U_3 U_1 $(U_1, U_2, U_3) \rightarrow U_1 \cdot U_2 \cdot U_3$

• クォーク場の基本演算 グルオン場を係数に含む大次元連立方程式の解 $\sum_{m \in L^4} D(U)_{n,m} x_m = b_n \rightarrow x = D(U)^{-1}b$

> 行列 D(U)の特徴 ・隣接格子点のみの疎行列 ・条件数 1/(クォークの質量) $p_n \rightarrow D(U)_{n,m} p_m$

格子量子色力学の計算

- 大次元配列の複素線型計算
 ベクトル化による高速化
- 各点での計算には隣接格子点のみが関係
 並列化による高速化
- 高統計が必要

可能な限り強力な計算機

格子量子色力学計算の2つのカテゴリー

■ クェンチ近似

•クォークの対生成・消滅効果を無視

- full QCD
 - •近似なし計算

クェンチ近似に較べ、1000倍以上の計算量

格子量子色力学研究の推移と計算機の発達

.素粒子と計算機

私の使った計算機

. 素粒子と計算機

QCD専用並列計算機の系譜

. CP-PACSによる格子QCD計算

. CP-PACSによる格子QCD計算

- 格子QCD計算機としての CP-PACS
- CP-PACSの最近の成果

CP-PACS諸元

- 理論ピーク性能
- 主記憶容量
- PU台数
- ノードプロセッサ
- ネットワーク
- 分散磁気ディスク
- 外部入出力
- サイズ
- 消費電力

614GFLOPS 128GB 2048PU+12810U 300MFLOPS/64MB RISC 8x17x16 ハイパークロスバー (300MB/sec ピーク) 1057GB HIPPI+ETHER 7m(D)x4.2m(W)x2m(H)275kW max

QCD計算機としてのCP-PACS

- 複素ベクト ル演算
- PU間高速データ転送
- 大量の中間結果
- 様々な格子サイズ

PVP-SW機構 RDMA機構 分散磁気ディスク PU群分割機能

QCD計算における実効性能:

クォーク連立一次方程式の解

• 計算のコア:行列とベクトルの積 $p_n \rightarrow D(U)_{n,m} p_m$

Load	store	mult	add	ideal #MC
78	12	92	52	98

•机上ピーク性能 $\frac{144FLOP}{98MC}$ ×150MHz = 220MFLOPS (73%)

•アセンブラーコード 186*MFLOPS*(62%)

通信のコア:ベクトルの袖を隣に送る

CP-PACSによる格子QCD計算

RDMA通信性能

QCD計算における実効性能

単体PU演算性能

MFLOPS

L : ベクトル長

CP-PACSによる格子QCD計算

格子QCD基本プログラム実効性能

. CP-PACSによる格子QCD計算

クェンチ近似でのハドロンの質量スペクトル

- ハドロンを特徴付ける最も基本的な量
- QCDの基本的検証
- 格子QCD計算の基礎
- クェンチ近似の効果の確認

──> 1981年(最初のシミュレーション)以来の 格子QCDの基本的課題

. CP-PACSによる格子QCD計算

▲ 軽いクォークでの統計誤差の急激な増大

- 充分な大きさの格子サイズの確保
- 格子間隔ゼロ(連続理論)への外挿の制御

『充分な計算力の必要性』

ハドロンの質量の実験値

良く合っているように見えたが...

質量の単位の見積もりを2倍誤っていた...

CP-PACSによる格子QCD計算

10%の精度で実験値を再現

・クェンチ効果の存在を確認・1981年以来の懸案の解決

. CP-PACSによる格子QCD計算

CP-PACS 計算の規模

β	5.9	6.1	6.25	6.47
size	$32^3 \times 56$	$40^3 \times 70$	$48^3 \times 84$	$64^3 \times 112$
a(fm)	0.101	0.076	0.064	0.047
La	3.23	3.06	3.05	3.01
#conf.	800	600	400	150
#PU	256	512	1024	2048
hour / conf	3.0	4.8	6.8	15
I / O loss	17%	16%	19%	18%

•全CPU時間 4630時間 (2048PU換算)

CP-PACSによる格子QCD計算

素粒子標準理論全体に取り重要な基本パラメータ

実験的に測定不可能(クォークの閉じ込め)

Full QCD 計算

- 最も軽いクォーク(up, down)の効果を
 取り入れた計算
- 真に現実的なQCDシミュレーションへの 第一歩

CP-PACSによる格子QCD計算

Full QCD計算の中間子質量差への影響

より実験結果に近い値を示唆

. 将来への展望

- 格子QCD研究の展開
- ペタフロップスコンピューティング

格子QCD研究の展開

高温・高密度下でのクォーク・グルオン プラズマ相転移

■ 弱い相互作用の未解決の問題への応用

クォーク・グルオンプラズマ

ペタフロップスコンピューティング

- 物理問題の数値解法には『臨界計算量』がある
- クェンチ近似QCDの値 1TFLOPS · year / 1TB
 現時点でほぼ達成

Full QCD:(単純には)クェンチQCDの1000倍以上
 計算速度がネック

$\implies \geq 1 PFLOPS \cdot year / 1TB$

ペタフロップスが実現すれば

- 理論的理解・計算アルゴリズムの進歩と相俟って、
 飛躍的な進歩を予想
 - > 素粒子標準理論(クォーク・レプトン+ 強・電・弱相互作用)が完成の域
- 現在では、手が付かない問題への挑戦
 - ───> 原子核への応用
- 標準理論を越える世界への挑戦

重要且つ興味ある問題は次々と現れる

■ 新しい物理は常により強力な計算力を必要とする