第15回HAS研究会 平成12年3月28日

計算物理学の現状と未来

宇川 彰 筑波大学計算物理学研究センター

- 計算物理学の目指すもの
- CP PACSによる計算物理学
- •計算物理学の今後

計算物理学の目指すもの

- 。物理学
 - •素粒子物理
 - 宇宙物理学
 - •物性物理学

- 物質の基本構成要素とその相互作用
- 宇宙の歴史と構造の成り立ち
- 多数個の原子集団としての物質の性質

自然法則の基本方程式

計算物理学の目指すもの

- 自然法則の基本方程式と自然現象を繋 ぐための基本的道具としての高速計算機
- 解析的方法(紙と鉛筆)では取り扱えない
 多自由度・非線形な物理系の理解
- 可能な限り近似を排除し、現実の条件に
 即応した計算の実現

- 物性物理学(固体水素の相図)
- 宇宙物理学(輻射宇宙流体力学)
- 素粒子物理学(格子量子色力学)
- CP-PACSの運用
- CP-PACSの概要

CP-PACSによる計算物理学

超並列計算機 CP-PACS

• 基本緒元:

- 2048PU+128IOU
- 614GFLOPS peak
- 128GByte memory
- 1058GByte disk

• 開発:

- ・ 1992 1996 筑波大学計算物理学研究センター
- · 日立製作所と協力(SR2201として製品化)

。完成稼動:

• 1996年(平成8年)9月

高性能計算機の発達と CP-PACS

- Top 500 List ranking
 - No. 1 November 1996 Linpack 368.2Gflops
 - No. 24 Novermber 1999
 - (still No. 4 within Japan)

CP-PACS の特徴

- ベクトル演算
- PU間高速データ転送
- 大量の中間結果
- 様々な問題サイズ

- PVP-SW機構 RDMA機構
- 分散磁気ディスク
- PU群分割機能

計算物理学研究センターのシステム構成

計算需要と問題規模に応じて適宜分割運用

格子QCD計算の実例

- 32^3 x 56 256PU
- 40^3 x 70 512PU
- 48^3 x 84 1024PU
- · 64^3 112 2048PU

April 96 CP-PACS (1024PU) starts operation

Average CPU usage over 3 years = 82%

物質粒子

• クォーク

• レプトン

 $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} s \\ c \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$ $\begin{pmatrix} e \\ V_{\rho} \end{pmatrix} \begin{pmatrix} \mu \\ V_{\mu} \end{pmatrix} \begin{pmatrix} \tau \\ V_{\tau} \end{pmatrix}$

ゲージ粒子(力の媒介粒子)

光子 パ
 ウィークボゾン パス
 グルオン
 パ ス
 部 4 日 5 作用
 3 い相互作用
 3 日 5 合力学
 3 日 5 合力学

ハドロンの強い相互作用と量子色力学

クォークの力学の不思議

- 陽子・中性子などハドロンはクォークからなる
- 単独のクォークは発見されていない

-----> クォークの閉じ込め

量子色力学 Quantum Chromodynamics (QCD)

- クォーク場 色電荷(3種類)と香り(6種)
 - 類)
- グルオン場 色電空基年時自由度とする場の理論

Gross-Wilczek, Politzer (1973)

積分形式による記述

$$Z = \int \prod_{n} d\phi_{n} e^{-S(\phi_{n})}$$
作用
$$\langle O(\phi) \rangle = \frac{1}{Z} \int \prod_{n} d\phi_{n} O(\phi) e^{-S(\phi_{n})}$$

作用を重みとする多重積分平均

• モンテ・カルロ法による多重積分の

数値計算

QCDの第一原理に基づくクォークの

力学の解明

- ・ クォークの閉じ込めの理解
- ・ハドロンの諸性質の導出
- ・新たな予言の抽出

CP-PACSにおける格子QCDプロジェクト

- October 1996 October 1997
 バドロンの質量スペクトル(クェンチ近似)
- September 1997 present
 完全なQCDシミュレーション

CP-PACS Performance (ratio to peak):

50% for quenched run64^3 x 1122048PU34% for full QCD24^3 x 48512PU

ノドロンの質量スペクトル(クェンチ近似)

格子QCDの基本的課題

クェンチ近似でのスペクトル
 を確立(1981年以来の懸案)

• クェンチ近似の効果を定量 的に解明

完全なQCDのシミュレーション

Meson hyperfine splitting

Eta meson mass

Strange quark mass

B meson decay constant

クォークの質量の決定

- クォークの質量:
 自然界の重さを決める基本
 的なパラメータ
- クォークの閉じ込めのため
 理論的にのみ決定可能
- ・従来の予想より遥かに軽い値
 (素粒子物理学全般に大きな影響)

梅村雅之・中本泰史・須佐元 (計算物理学研究センター)

宇宙物理現象の決定要素

- 重力(Newton近似)
- •物質の流体運動
- 輻射輸送

→ 光と物質の相互作用の忠実な取り扱い

・光子分布関数に対する Boltzmann方程式

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + n \cdot \nabla I_{\nu} = \chi_{\nu} (S_{\nu} - I_{\nu})$$

•6次元問題

$$3D (space) + 2D (directions) + 1D (frequency)$$
$$N^{3} = 128^{3} \qquad N_{\theta} = N_{\phi} = 128 \qquad N_{v} = 6$$
$$\# flop = f \cdot N_{iter} \cdot N^{3} N_{\theta} N_{\phi} = 1.14T flops \cdot hour (f \approx 200, N_{iter} \approx 100)$$

• 並列化

Sequential Wave Front Method high parallelization efficiency ($\geq 98\%$ for $N_{\theta,\phi} = 128$ on 2048PU)

• 実効効率: 25% of peak on CP-PACS

宇宙の再イオン化のシミュレーション

水素原子の再イオン化 のスナップショット: Big Bangの約10億年後 から5億年後まで

Z = 15 5 過去 現在

赤 青 イオン化度増加

超高圧化の固体水素の相図

•物性物理としての興味

- 陽子と電子からなる最も簡単な固体
- 高圧化での金属化
- 陽子の量子効果

• 宇宙物理・惑星物理としての興味

高温高圧化での金属化
 木星の地磁気?

• 実験

- 高温:140GPa,3000Kで金属化
- 低温: 340GPa以下で金属化なし
 - •100GPa以上の結晶構造未知

常行信司・荻津格他 (東大物性研究所)

CP-PACSの共同利用

CP PACS全マシン 換算で約200時間

原理経路積分分子動力学法

Marx-Parrinello (1994)

●N体の量子問題 → NP体の古典問題

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^n \Delta_i + V_{DFT}(\{r_i\})$$
$$Z = Tr(e^{-\beta H}) = Tr(e^{-\beta H/P})^P = \int dr^1 \cdots dr^P e^{-\beta V_{eff}(\{r_i\}^s)}$$

• 計算規模

- N = 64 hydrogen/supercell
- P = 32 64
- $1500 2100MD \ steps(\Delta t = 0.1 0.15 \ fs)$
- •10 CG steps for 1MD step
- 1*MD* step / (1 Tflops \cdot min)

Phase II (T=80K, P=130GPa) Phase III (T=100K, P=180GPa)

今後の計算物理学の重要テーマと計算量の検討

- •素粒子物理学格子QCDの完全な解決
- 原子核物理学
- 宇宙物理学
- •物性物理学

現実的核力に基づく核構造

輻射流体力学による時間発展

硬い物質から柔らかい物質へ

格子QCDシミュレーション: 評価方法

仮定:

- RG -gauge + clover quark for 2 dynamical flavors
- HMC algorithm
- BiCGStab solver

FLOP 解析:

$$FLOP = (A + B \cdot N_{inv}) \frac{V}{\Delta \tau} \times 10^{-12} \ TFLOPS \cdot \sec/trajectory$$

CP-PACS experience

- A = 45600, B=8800
- Ninv= 31+10.7/mq
- Dt = (0.223mq 0.620mq^2)x 24/L (mq in GeV)

通信についても同様な解析

格子QCDシミュレーション: 評価結果

物理系	目標	現状
 物理サイズ クォーク質量 	3 fm 15 MeV (pi/rho=0.4)	2.5fm 44 MeV (0.6)
 統計 	25000	2000
理論的枠組み	従来からの方法	ドメインウォール法
理論的枠組み ・格子間隔	従来からの方法 3 GeV	<u>ドメインウォー</u> ル法 2 GeV
理論的枠組み ・格子間隔 ・格子サイズ	従来からの方法 3 GeV 48^3 x 96	<mark>ドメインウォール法</mark> 2 GeV 32^3 x 64 x 10
理論的枠組み ・格子間隔 ・格子サイズ ・CPU 時間	従来からの方法 3 GeV 48^3 x 96 409 days	ドメインウォール法 2 GeV 32^3 x 64 x 10 343 days

仮定マシンパラメータ:

- 32Gflops/PU , 16^3 = 4096PU
- 131 Tflops total 演算性能
- 16GBvte/sec/channel 通信性能

物性物理:生体反応の電子論的理解

- TCA サイクルと酸化的リン酸化
- カルビンサイクル(光合成サイクル)
- 視物質(ロドプシンなど)の光反応
- ヘモグロビンの酸素運搬機能

未開拓の分野/多くの困難とチャレンジ
 ・大きな分子量
 ・水分子の影響
 ・小さなエネルギー差
 ・遅い反応速度

生体反応の電子論的理解:計算時間評価

• 平面波基底を用いた第一原理分子動力学法

- *FFT* $\propto N^2 \log N$
- pseudo potential calculation $\propto N^2$
- Gram Schmidt diagonalization $\propto N^3$
- ・ 原子数N=5000に対するCPU時間評価
 1000 sec/1 MD step 1 ps/100days
 - 仮定 16Gflops*5000PU=80Tflops
 - 32GB/PU
 - 4-8GB/sec network throughput (通信比率25%)

	field	problem	algorithm	effective speed (TFLOPS)	size	CPU hours	main memory
1	particle physics	lattice QCD	HMC method	131	48^3x96	409 days	176GB
2	nuclear physics	nuclear properties from realistic nuclear potential	quantum MC method	100	Carbon with A=12	14 days	150GB
3	astrophysics	radiation hydrodynamics	SWT method	131	128^5x6	9.2 hours	114GB
4	material science	determination of material properties	density functional method	100	2000 atoms	127 days	115GB
5	biophysics	electronic calculation of biochemical reactions	ab initio MD path integral	80	5000 atoms	100 days	32GB/PU
6	biophysics	protein folding	MD	100	200 amino acids	1300 days	50GB

O(100Tflops) needed

SIA roadmap on semiconductor technology

Year	1999	2001	2003	2006	2009	2012
rule (um)	0.18	0.15	0.13	0.10	0.07	0.05
clock(MHz)	1250	1500	2100	3500	6000	10000
tr. in MPU	21M	40M	76M	200M	520M	1.4B
power(W)	90	110	130	160	170	175

2GHz clock / 4 pipelines of add&mult = 16Gflops around 2003
8192 CPU's = 131 Tflops

進行中の大規模プロジェクト

計算物理学研究センターでの基礎研究

学振未来開拓事業「計算科学」 "次世代超並列計算機開発"(平成9年度 13年度)

- メモリ CPU間のデータ転送バンド幅の問題 に対する SCIMA アーキテクチャの研究
- CPU演算性能とネットワーク性能のバランス の検討
- 高速且つ柔軟な並列入出力・可視化システムの構築

SCIMA concept

 FPU's will be running much faster than data can be fed from off-chip memory

 use SRAM memory on-chip to secure the bandwidth (data repeatedly used are kept on-chip in a controlled way)

結語

計算物理学の夢:

"計算機を紙と鉛筆の替わりに使って、

自然を掌に載せてみたい"

20世紀の発展:

"このような夢がありうることの認識"

■ 21世紀:

"夢の実現と自然科学全体への展開"

硬川物質から柔らか川物質へ