German-Japanese Workshop 27 November, 2004

The CP-PACS Machine Plan for 2005-2007

Akira Ukawa Center for Computational Sciences University of Tsukuba

- □ Introduction
- CP-PACS successor
- Theoretical Benchmark
- Schedule

25 years of R&D of parallel computers at Tsukuba

CP-PACS

Machine perspective in Japan

KEK

- Upgrade of SR8000F1 in March 2006
- Government supercomputer procurement in progress
- >20Tflops/10TB peak performance targeted
- Center for Computational Sciences, U. of Tsukuba
 - Successor to CP-PACS planned
 - Funding requested for JFY2005-2007
 - MPP in terms of commodity components
 - At least 12Tflops/4TB system by March 2006; further installation in later years

CP-PACS successor outline

- Strategy: MPP in terms of commodity components
 - Node
 - □ Single CPU (Xeon 3GHz)
 - □ 2GB PC3200 memory with FSB800
 - i.e., 6.4GB/s peak memory bandwidth to each CPU
 - 200GB disk (Raid0 mirror)
 - Network
 - 3-dimensional hyper-crossbar, i.e., crossbar switch in each direction
 - Dual GbEthernet for each direction,
 - i.e., 025GB/s/link and an agregate 0.75GB/s/node
 - System size
 - At least 2048 CPU (16x16x8, 12Tflops/4TB), and hopefuly up to 3072 CPU (16x16x12, 18Tflops/6TB)

Board layout

Rack layout and network connections

[**Z**]

[**Z**]

Connections for CPU([0-F],[0-F],[0-1]) ($1/6^{th} = 512$ CPU) are shown

- (Y1-Y2,Z) CPU rack(x=0 ~ F,y=Y1 ~ Y2,z=Z)
 - X-connection (1 line =128cables)
 - Y-connection (1 line = 128cables)
 - Z-connection (1 line = 32 cables)

- X-switch rack($y=0 \sim 15$, z=Z)
- Y-switch rack($x=0 \sim 15$, z=Z)

[Y] Z-switch rack(
$$x=0 \sim 15$$
, $y=Y$)

Performance Benchmark estimate (I)

- Wilson-clover Nf=2+1 PHMC code
 - Parameters

lattice size $N_s^3 \times N_t$ 0BiCGStab inversions $N_{inv} = 31 + \frac{10.7}{m_q a}$ *polynomial order N_{poly} HMC step size $d\tau = (0.223m_q (GeV) - 0.620m_q (GeV)^2) \times \frac{24}{N_s}$ *

 $n_x \times n_y \times n_z$

pi/rho	mq(GeV)	
0.7	0.079	
0.6	0.044	
0.5	0.0255	
0.4	0.0145	
0.3	0.0075	
0.2	0.0025	

node array

*Nf=2 empirical fit ; need revision for Nf=2+1

- Flop/node/trajectory
 - # flops = $(130938 + 8808N_{inv} + 3666N_{poly}) \times \frac{N_s^3 \times N_t}{n_x n_y n_z} \frac{1}{d\tau}$
- Data sent/node/trajectory

$$# data \ sent = \left(10 + 8N_{inv} + \frac{7}{2}N_{poly}\right) \times 192 \times \left(\frac{N_t}{2} + 1\right) \times 2 \times \left(\frac{N_s}{n_x}\frac{N_s}{n_y} + perm\right) \frac{1}{d\tau} \quad Byte$$

Performance Benchmark estimate (II)

Target runs

lattice size $24^3 \times 48$ at $a \approx 0.1 fm$ $32^3 \times 64$ at $a \approx \sqrt{\frac{1}{2}} 0.1 fm$ #trajectories10000polynomial order300

Machine assumptions

system size2048CPUjob partition $8^3 = 512CPU \times 4$ CPU performance2 G flopsnetwork performance0.2 GB / s / link (3 directions overlapped)network latency $20 \mu s$

Performance Benchmark estimate (III)

			Standard HMC								
1/a	lattice size	pi/rho	Ninv	1/dt	tir	10000traj					
(GeV)	N N s t				calc	comm	total	(days)			
2		0.6	517	116	0.12	0.13	0.25	26			
		0.5	870	189	0.30	0.32	0.62	65			
	24x48	0.4	1507	322	0.84	0.89	1.73	180			
		0.3	2884	611	2.93	3.11	6.03	629			
		0.2	8591	1806	25.00	26.57	51.57	5372			
2.83		0.6	719	155	0.67	0.46	1.13	118			
		0.5	1218	252	1.72	1.19	2.91	303			
	32x64	0.4	2118	430	4.86	3.39	8.25	860			
		0.3	4066	814	17.16	11.99	29.14	3036			
		0.2	12143	2408	148.23	103.66	251.89	26238			

Rather dismal number of days

Acceleration possibilities (I)

Hasenbusch acceleration

M. Hasenbusch Hep-lat/0107019

$$\det M^{+}M = \int d\phi_{1}^{+}d\phi_{1} \exp\left(-\phi_{1}^{+}\frac{1}{W^{+}W}\phi_{1}\right) \cdot \int d\phi_{2}^{+}d\phi_{2} \exp\left(-\phi_{2}^{+}\frac{1}{\widetilde{M}^{+}\widetilde{M}}\phi_{1}\right)$$

$$M = 1 - \kappa^2 M_{oe} M_{ee}$$
$$W = M + \rho$$
$$\widetilde{M} = W^{-1} M$$

- Factor 2 larger step size without fine tuning of ρ
- Implementation in progress
- Domain-decomposition techniques M. Luescher Hep-lat/0409106

Acceleration possibilities (II)

Domain decomposition acceleration

$$\det D^{+}D = \int d\phi_{\Omega}^{+}d\phi_{\Omega} \exp\left(-\phi_{\Omega}^{+}\frac{1}{D_{\Omega}^{+}D_{\Omega}}\phi_{\Omega}\right) \cdot \int d\phi_{\Omega^{*}}^{+}d\phi_{\Omega^{*}} \exp\left(-\phi_{\Omega^{*}}^{+}\frac{1}{D_{\Omega^{*}}^{+}D_{\Omega^{*}}}\phi_{\Omega^{*}}\right) \cdot \int d\phi_{R}^{+}d\phi_{R} \exp\left(-\phi_{R}^{+}\frac{1}{R^{+}R}\phi_{R}\right)$$

$$D_{\Omega} = \sum_{n} D_{\Lambda_{n}} \quad , \quad D_{\Omega^{*}} = \sum_{n} D_{\Lambda_{n}^{*}} \quad \text{Dirichlet b.c. on} \quad \partial\Omega = \sum_{n} \partial\Lambda_{n} \quad , \quad \partial\Omega^{*} = \sum_{n} \partial\Lambda_{n}^{*}$$

$$R = 1 - \theta_{\partial\Omega^{*}} D_{\Omega}^{-1} D_{\partial\Omega} D_{\Omega^{*}}^{-1} D_{\partial\Omega^{*}} \quad \text{Values only on the boundary of domains}$$

$$R^{-1} = 1 - \theta_{\partial\Omega^{*}} D^{-1} D_{\partial\Omega^{*}}$$

- Crucial observation(Luescher)
 - F_0 force due to gauge action
 - F_1 force due to D_{Ω} and D_{Ω^*}
 - F_2 force due to R

Numerically at
$$\frac{m_{\pi}}{m_{\rho}} \approx 0.7 - 0.4$$
 and $a^{-1} \approx 2.4$ GeV

$$F_0: F_1: F_2 \approx 5: 1: 0.2 = 25: 5: 1$$

Use larger step sizes for quarks

$$d\tau_0: d\tau_1: d\tau_2 \approx 1:5:25$$

19

Both Floating and Communication Requirements are reduced.....

Acceleration possibilities (IV)

standard HMC						domain-decomposed HMC										
1/a	latt siz	ice ze	pi/rho		10000traj	#steps				time/traj(hr)			10000traj		accel erati on	
(GeV)	N s	N t		(days)		NO N1 M		N2	calc	comm total		(days)				
2 24x48			0.6		26		4	5	5	0.031	0.005	0.037		4		7
			0.5		65		4	5	6	0.058	0.010	0.068		7		9
	0.4		180		4	5	7	0.110	0.019	0.129		13		13		
	0.3		629		4	5	8	0.230	0.041	0.271		28		22		
		0.2		5372		4	5	9	0 747	0 1.39	0.880		92		59	
			0.6		118		5	6	6	0.181	0.018	0.199		21		6
2.83	32x6		0.5		303		5	6	7	0.333	0.033	0.366		38		8
		2x64	0.4		860		5	6	9	0.713	0.071	0.784		82		11
			0.3		3036		5	6	10	1.475	0.147	1.622		169		18
			0.2		26238	astas	5	6	11	4.739	0.473	5.213		543		48

Only a paper estimate, but more than encouraging

Implementation in progress

Physics issues – standard targets (III)

- Finite-temperature behavior
 - Physical Nf=2+1 Phase diagram
 - Critical temperature
 - Equation of state
 - Finite-temperature effects in the hadron spectra
 - Issue of parity-broken phase
- Finite-density behavior
 - Small chemical potential
 - Large chemical potential?

Physics issues – some challenges

- K->pipi decays and CP violation
 - Calcuation with two pions in the final state
 - Already some success in the I=2 channel
 - Much advance in the related pipi 2-body calculations
 - Finite-size theoretical setup by Lellouch-Luescher
 - Hadron scattering and nulcear binding
 - Nucleon-nucleon potential
 - Dependence on quark mass is a very interesting issue
 - e.g., deuteron may not bound if quarks are heavier....(?)
 - Kaon-nucleon potential
 - Relevant for penta-quark

Schedule

