

地球規模流動現象解明のための計算科学 大規模数値シミュレーション

里 深 信 行 京都工芸繊維大学工芸学部

流動現象の自由度

乱流現象の自由度: O(Re^{9/4}) (Re: レイノルズ数)

	Re	自由度
步行(4km/h, L=0.5m)	3.70×10^{4}	1.9×10^{10}
自転車(20km/h, L=0.5m)	1.85×10^{5}	7.1×10^{11}
自動車(60km/h, L=2.0m)	2.22×10^{6}	1.9 × 10 ¹⁴

空気の動粘性係数:v=1.5×10⁻⁵m²/s

流動現象の大規模数値シミュレーション

流動現象の大規模数値シミュレーション

<u>ハードウェア性能</u>

• Memory容量:最低32Gbyte

• Disk容量:数百Gbyte~数Tbyte

・CPUアーキテクチャ:シングル or パラレルCPU

シングルCPU & 32Gbyte Memory

→ 非現実的

パラレルCPU & 32Gbyte Memory

現実的

流動現象の大規模数値シミュレーション ソフトウェア

 ・パラレルCPU:理論的にCPU台数倍の スピードアップ可能
 → パラレル・アーキテクチャに 適合したスキーム

 ・パラレル化

 自動パラレル化:コンパイラ未成熟
 手動パラレル化:MPI,PVM等の Message Passing Library

流動現象の大規模数値シミュレーション プラットフォーム

Exemplar V-class (HP)

3 Hyper-nodes Processor : PA8200 (200MHz) 32PU : 16, 8, 8PU 48Gbyte : 16, 16, 16Gbyte

Hyper-node内:共有メモリ Hyper-node間:分散メモリ

流動現象数値シミュレータ

研究組織

研究計画概要

超並列型コンピュータ適合 計算流体力学アルゴリズムの開発

・高次精度線の方法 ・格子ボルツマン法

超並列型コンピュータ適合 解適応格子生成アルゴリズムの開発 ・分解能向上

- 基礎的大規模数値シミュレーション
 - ・立方化球座標系
 - ・仮想境界デカルト格子法
 - ・コリオリカ,密度成層効果

Incompressible Navier-Stokes Equations

$$\frac{\partial u_i}{\partial x_i} = 0$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_i^2}$$

Spatial Discretization: Variable Order Proper Convective Scheme Modified Differential Quadrature Method

$$\frac{d\vec{u_i}}{dt} = \vec{W}_i(\vec{u_i})$$

Time Integration: *3rd or 4th Order Runge-Kutta Scheme*

Modified Differential Quadrature (MDQ) Method

M: Order of Spatial Accuracy

 $\frac{\partial u}{\partial x}|_{k} \cong \sum_{m=-M/2}^{M/2} a_{k,m} u_{k+m} \qquad \frac{\partial^{2} u}{\partial x^{2}}|_{k} \cong \sum_{m=-M/2}^{M/2} b_{k,m} u_{k+m}$

$$a_{k,m} = \frac{\Pi'(x_k)}{(x_k - x_{k+m})\Pi'(x_k)} \qquad b_{k,m} = \sum_{1=-M/2}^{M/2} a_{k,1}a_{1,m}$$
$$a_{k,0} = \Pi''(x_k)/2\Pi'(x_k) \qquad \Pi(x) = (x - x_{k-M/2})L \quad (x - x_k)L \quad (x - x_{k+M/2})$$

JSPS Research for the Future Program

Variable Order Proper Convective Scheme

$$u_j \frac{\partial u_i}{\partial x_j} |_k \approx \sum_{1=1}^{M/2} c_1 \cdot \frac{\overline{u_j} x_j}{\overline{u_j} \sqrt[x_j]{\delta_1 \cdot u_j}} \qquad (1' = 21 - 1)$$

M: Order of Spatial Accuracy

$$\overline{u_{j}}^{x_{j}}|_{k\pm 1'/2} = \sum_{m=1}^{M/2} c_{m'} \frac{1}{2} \left[u_{j} |_{k\pm (1'+m')/2} + u_{j} |_{k\pm (1'-m')/2} \right]$$

$$\overline{\phi}^{1'x_{j}}|_{k} = \frac{1}{2} \left(\phi_{k+1'/2} + \phi_{k-1'/2} \right)$$

$$\frac{\delta_{1'}u_{i}}{\delta_{1'}x_{j}}|_{k\pm 1'/2} = \frac{\pm 1}{1'h_{x_{j}}} \left(u_{i} |_{k\pm 1'} - u_{i} |_{k} \right)$$

Pressure Equation Solver

Variable Order Multigrid Method

$$\nabla^2 p^{n+1}|_k = \frac{1}{\Delta t} \frac{\partial \overline{u_i}^* x_i}{\partial x_i}|_k \qquad : Elliptic Equation$$

, Unsteady Term (t: Pseudo-time)

 $\frac{\partial p}{\partial \tau} = \nabla^2 p^{n+1} |_k - \frac{1}{\Delta t} \frac{\partial \overline{u_i}^* x_i}{\partial x_i} |_k \quad : \text{Parabolic Equation}$

Higher Order Method of Lines
Multigrid Method

Higher Order Method of Lines

Validation of Spatial Accuracy

JSPS Research for the Future Program Using Higher Order Method of Lines

Validation of Conservation Property

Energy and Energy Dissipation Budgets

DNS of 3D Homogeneous Isotropic Turbulence Using Higher Order Method of Lines

Computational Conditions: 256³ grid points v=1/1000 (Re_t=13800) 10th order of spatial accuracy

Iso-Surface of Enstrophy

DNS of 3D Homogeneous Isotropic Turbulence Using Higher Order Method of Lines

Computational Conditions: 256³ grid points $v=1/1000 (Re_t=13800)$ 10th order of spatial accuracy

Iso-Surface of Pressure (t=1.0)

Parallelization

Higher Order Method of Lines

Speedup Ratio : T(1)/T(pu) **256³**** $32^{3}*$ **64**³* pu 1.000 1.000 1 1.000 2 *1.955* 2.108 4 3.571 *4.499* 8 5.680 8.326 4.053 *16* **9.941** 15.482

* : Cubic Driven Cavity (2nd Order) with MPI Message Passing Library

** : 3D Homogeneous Isotropic Turbulence (10th Order) with MPI Message Passing Library

Lattice Boltzmann Method

Lattice Boltzmann Equation

$$f_{\sigma i}(\mathbf{x} + \mathbf{e}_{\sigma i}, t+1) - f_{\sigma i}(\mathbf{x}, t) = \Omega_{\sigma i}$$

 $f_{\sigma i}$: Single-Particle Distribution Function $\Omega_{\sigma i}$: Collision OperatorSingle Time Relaxation $\mathbf{e}_{\sigma i}$: VelocityApproximation

Lattice Boltzmann BGK Equation

$$f_{\sigma i}(\mathbf{x} + \mathbf{e}_{\sigma i}, t+1) - f_{\sigma i}(\mathbf{x}, t) = -\frac{1}{\tau} \Big[f_{\sigma i}(\mathbf{x}, t) - f_{\sigma i}^{(0)}(\mathbf{x}, t) \Big]$$

 J_{Oi} : Equilibrium Distribution Function τ : Single Relaxation Time (=(6v+1)/2)

Lattice Boltzmann Method

(**i,j+1**)

(i+1,j)

 $\frac{Physical Quantities (\rho, \mathbf{u})}{\rho = \sum_{\sigma} \sum_{i} f_{\sigma i}}, \quad \rho \mathbf{u} = \sum_{\sigma} \sum_{i} f_{\sigma i} \mathbf{e}_{\sigma i}$

In the case of square lattice model $\sigma=0,1,2$, i=1,2,3,4

Equilibrium Distribution $f_{01}^{(0)} = \rho \alpha - 3\rho \mathbf{u}^2 / 2$ $f_{1i}^{(0)} = \rho \beta + \rho(e_{1i} \cdot \mathbf{u}) / 3 + \rho(e_{1i} \cdot \mathbf{u})^2 / 2 - \rho \mathbf{u}^2 / 6$ $f_{2i}^{(0)} = \rho(1 - \alpha - 4\beta) / 4 + \rho(e_{2i} \cdot \mathbf{u}) / 12 + \rho(e_{2i} \cdot \mathbf{u})^2 / 8 - \rho \mathbf{u}^2 / 24$

(**i-1**,**j**)

DNS of Flows in Square Duct Using Lattice Boltzmann Method

Computational Conditions: 641x65x65 grid points Re=200

Streamwise Velocity Distributions

DNS of Flows in Square Duct with Sudden Expansion Using Lattice Boltzmann Method

Computational Conditions: Expansion Ratio 1:4 Re=10 128x33x33 (upstream) 129x65x65 (downstream)

Lattice Boltzmann Method on Non-uniform Lattice

Usual Lattice Boltzmann

) : n+1 on grid point (target) By using interpolation • and

 \bullet : n , \bullet \bullet : n+1

Lattice Boltzmann on Non-uniform Lattice

Lattice Boltzmann Method on Non-uniform Lattice

Validation of Non-uniform Lattice Approach

DNS of Flows in Channel with Sudden Expansion

Non-uniform Lattice(CPU Time Ratio 0.19)Uniform Lattice(CPU Time Ratio 1.00)

Lattice Boltzmann Method with Acceleration of Convergence

Multigrid Technique

Parallelization

Lattice Boltzmann Method

3D Homogeneous Isotropic Turbulence

ри	<i>32³</i> *	64 ³ *
1	1.000	1.000
2	1.754	1.851
4	2.984	3.323
8	4.505	5.460
16	5.622	8.162

Speedup Ratio : T(1)/T(pu)

*: MPI message passing library

Cubed Sphere Coordinate System

Spherical Polar Coordinates

Cubed Sphere Coordinate System

Transformation Map

DNS of Flows on a Sphere Using Cubed Sphere Coordinates

Global Steady State Nonlinear Zonal Geostrophic Flow (Test Case : 2)

Shallow Water Equations

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -f \hat{\mathbf{k}} \times \mathbf{v} - g \nabla h$$
$$\frac{\partial h^*}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + h^* \nabla \cdot \mathbf{v} = 0$$

Rossby-Haurwitz Wave (Test Case : 6)

JSPS <u>Researc</u>h for the Future Program

Parallelization

Cubed Sphere Coordinates

Advection over Pole After 5 Full Rotations

ри	<i>91</i> ² *	<i>181²</i> *	<i>901²</i> *
1	1.000	1.000	1.000
6	7.815	8.253	5.943

Speedup Ratio : T(1)/T(pu)

*: MPI message passing library

Cartesian Grid Approach with Virtual Boundary Method

Usual Cartesian Grid Approach

Cartesian Grid Approach with Virtual Boundary Method

Cartesian Grid Approach with Virtual Boundary Method

JSPS Research for the Future Program

> 1) Velocity on Virtual Boundary Point: $U_i(\mathbf{x}_s)$ $U_i(\mathbf{x}_s) = \sum_{\mathbf{x}_k}^{\mathbf{x}_k+1} Q_{\mathbf{x}_k}(\mathbf{x}_s) u_i(\mathbf{x}_k)$ Additional Forcing Term: $G_i(\mathbf{x}_s, t)$ $G_i(\mathbf{x}_s, t) = \alpha \int_0^t U_i(\mathbf{x}_s, t) dt + \beta U_i(\mathbf{x}_s, t)$ Modified Navier-Stokes Equations:

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_i^2} + \frac{G_i}{G_i}$$

DNS of Flows Around a Sphere

Computational Conditions Re=500, Virtual Boundary Points: 153600 Total Cartesian Grid Points: 973744

Cartesian Grid Approach with Adaptive Grid Refinement

Re = 100 (with Virtual Boundary Method)

研究達成状況

高次精度線の方法

- ・3次元一様等方性乱流
- ・並列化

格子ボルツマン法

- ・3次元正方直管内流れ
- ・3次元急拡大管内流れ
- ・並列化

立方化球座標系

- ・球面上移流方程式
- ・球面上浅水波方程式
- ・並列化

仮想境界デカルト格子法

- ・球周りの流れ
- ・解適応デカルト格子

今後の研究計画

平成12年度

- ・並列化効率の向上 (高次精度線の方法、格子ボルツマン法)
- ・解適応格子アルゴリズムとのカップリング
- ・コリオリカを考慮したNavier-Stokes
 シミュレーションコードの開発
- ・基礎的環境シミュレーションの実施

平成13年度

- ・高精度大規模数値シミュレーションの実施 (高次精度線の方法、格子ボルツマン法)
- ・シミュレーション結果のデータベース化
- ・名古屋大学グループと共同で地球規模流動現象 解明のための計算科学的手法の提示