

地球規模流動現象解明のための計算科学

<u>数理·物理モデルと計算アルゴリズムの開発</u>

名古屋大学グループ **金田 行雄**

<u>大規模数値シミュレーション</u>

京都工芸繊維大学グループ

里深 信行

流体力学(ダイナミックコア)

流動現象の核芯部分

<u>数理・物理モデルと計算アルゴリズムの開発</u>

計算科学的要素技術を開発

地球規模流動系のスケール

<u>(A) 数理·物理モデル</u>

- 従来のモデルと我々のモデルの考え方
- 乱流力学/ダイナミクスの知見
- → 新しいモデル

(B) 計算アルゴリズム

(回転球面上の流体計算のための高速アルゴリズム)

- スペクトル法(高速球面調和関数変換に基づく)
- 擬似スペクトル法(二重Fourier級数法)
- 結合コンパクト差分法

昨年発表

昨年発表

(C) 可視化手法

<u>(A) 数理·物理モデル</u>

分子粘性、分子拡散とのアナロジー

Boussinesq, Prandtl, etc.

しかし

スケールが分離していない、(ミクロ \leftrightarrow マクロ) 非局所性 (圧力)(1点完結近似) $\nabla^2 p = -\left(s^2 - \frac{1}{2}\omega^2\right)$

実際

<mark>恣意的パラメータの調節が必要</mark> どう選ぶか、どこまで正しいか不明 ? 場合によって 正しくない、矛盾(逆勾配拡散)、敏感な依存

例: 地球シミュレータ(分解能変更 → 再調節 ?)

<u>計算結果の調節パラメータへの敏感さ</u>

海洋モデル

Bryan(1987)

- 流体力学の原理に基づく(第1原理的)
 - 恣意的パラメータの調節に頼らない
 - 数理・物理的根拠を持つ

渦や波の各成分(モード) = 個性を持つ 大きさ、向きに依存

非局所性、スペクトル(構造)を考慮する
 スペクトル理論、2点完結近似、構造関数の方法

<u> 乱流力学(ダイナミクス)の把握</u>が重要

- > (1) 3次元乱流
 > (2) 2次元乱流
 > (3) 回転球面上の乱流
 回転乱流(3次元) 乱流輸送
 成層乱流 鉛直拡散の抑制、2重拡散
 剪断乱流 線形理論解析(RDT)
- ロスビー波の乱流による位相変調

普遍平衡領域の非普遍性 - - 非等方性

High Vorticity Regions

N=512³

昨年 N=256³ **現在** N=1024³

圏界面大気乱流の観測スペクトル

<u>地球規模流動現象</u> 水平方向のスケール…数千km >>鉛直方向のスケール…数10km

<u>モデル</u>

2次元乱流モデル
 平面乱流モデル
 回転球面上の乱
 流モデル,..., etc.

Fig. 1 Kinetic energy spectrum near the tropopause from GASP aircraft data. The spectrum for meridional winds is shifted one decade to the right. Spectral averages based on long- (\oplus), short- (\bigcirc) and intermediate- (\times) scale data are shown.

Nastrom, et al(1984)

1024x1024

E(S)

Kraichnan –Leith-Batchelor Spectrum

$$E(k) = C' \eta^{2/3} k^{-3}$$
$$E(k) = C_K \eta^{2/3} k^{-3} [\ln(k / k_1)]^{-1/3}$$

 10^{6} 10 B=0 10⁻² β=5 ····· β=10 10⁻³ 10 <u>3乗</u> 10 10⁻⁶ 10^{-7} 10⁻⁸ 10⁻⁹ 2 3 4 5 6 7 2 3 4 5 2 4 5 6 7 100 10 k.

TFM (Kraichnana) $C_{K} = 1.74g^{2/3}$

LRA (Kaneda)

DNS

 $C_{K} = 1.74 g^{27}$ $C_{K} = 1.81$ $C_{K} \approx 1.9$

- LES (Large Eddy Simulation)
 - > 3次元 慣性小領域
 - ▶ 2次元
 - Inverse Energy Transfer (k -5/3) 領域 Enstrophy Transfer (k-3) 領域
- 乱流拡散のスペクトルモデル
 時間べき展開とPade-近似(広い適用範囲)
 Deduced Dynamic Model
- Reduced Dynamic Model 保存則OK, 波数空間での間引き
- スペクトル統計理論
 - 効率的計算法、パッシブスカラー場

$$T_{>k_{c}}(k) \equiv -2v_{e}(k | k_{c})k^{2}\overline{E}(k)$$

$$\left(\frac{\partial}{\partial t} + 2vk^{2} + 2v_{e}(k | k_{c})k^{2}\right)\overline{E}(k) = \overline{T}(k)$$

$$\underbrace{\mathsf{LES} \ \boldsymbol{\pm} \boldsymbol{\tau} \boldsymbol{\mu}}_{\partial t} = \underbrace{\mathsf{R}}_{ijm}(k) = \underbrace{\mathsf{LR}}_{ijm}(k)$$

 $\mathbf{p}+\mathbf{q}=\mathbf{k}$

<u>DNSとスペクトルモデルとの比較</u> 3次元

図1:準定常状態におけるE(k) turn over time 12

<u>今後の課題</u>

- ・強い非等方乱流の理論、モデルの開発、
- 回転球面上へのモデルの実装と評価

回転球面上の流体計算のための高速

(B) 計算アルゴリズム

スペクトル法 - - 球面調和関数変換
 高精度
 気象予報モデル

 ・ 擬似スペクトル法(二重Fourier級数)法 高速 気候予測モデル

- <u>結合コンパクト差分法</u> 高精度高速、複雑な境界条件 海洋モデル
- 差分法(高速、精度が低い)、有限要素法など

回転球面上の流体計算のための高速 **計算アルゴリズム(2)**

<u>高速球面調和関数変換</u>

スペクトル法で球面上の流体方程式を解くとき にもっとも計算時間がかかる

- (離散)球面調和関数変換
 - 有限の位数(切断波数)で展開を打ち切って、 選点的に関数を近似する(スペクトル法)

$$g(\lambda_i, \mu_j) = \sum_{m=0}^{M} \sum_{n=m}^{M} g_n^m Y_n^m(\lambda_i, \mu_j)$$

我々のアルゴリズムの概要

高速計算法の所要時間

切断波数	高速変換	従来法	高速化率
682	2.80	2.88	1.03
1365	17.3	23.1	1.34
2730	111	185	1.66

•alpha 21264 500MHz•DEC cc -O7

•倍精度計算で相対 誤差が 10⁻¹³ 程度

- これまでの成果

 アルゴリズムの提案
 内挿の安定性の理論と実際
 FMM の最適化
- これからの課題
 - 多段内挿と split の安定性
 - 分割統治法の実装
 - FMM のさらなる最適化

<u>擬似スペクトル(二重Fourier級数)法</u>

$$\phi(\lambda,\theta) = \sum_{m=-\infty}^{\infty} \sum_{l=0}^{\infty} \phi_l^m F_l^m(\theta) e^{im\lambda}$$

$$F_l^m(\theta) = \begin{cases} \cos l\theta & m = \text{even} \\ \sin l\theta & m = \text{odd} \end{cases}$$
求面座標系

x

- <u>浅水方程式(フィルタの検証)</u>
 - 新提案フィルタが有効であることが分かった

• <u>非発散方程式</u>

- 新しい保存スキームの提案
- "Fornbergの方法" + "Yeeの方法"により、 <u>高精度</u>かつ<u>高速</u>に解くことができた

今後の課題

- 乱流などのより複雑なケースへの適用
- フィルタの有効性に対する理論的説明

従来の差分法(中心差分) (6次精度) $f'_{i} = a \frac{f_{i+1} - f_{i-1}}{2h} + b \frac{f_{i+2} - f_{i-2}}{4h} + c \frac{f_{i+3} - f_{i-3}}{6h}$

コンパクト差分(10次精度)(S. K. Lele 1992 etc) $\beta f'_{i-2} + \alpha f'_{i-1} + f'_i + \alpha f'_{i+1} + \beta f'_{i+2}$ $= c \frac{f_{i+3} - f_{i-3}}{6h} + b \frac{f_{i+2} - f_{i-2}}{4h} + a \frac{f_{i+1} - f_{i-1}}{2h}$

<u>結合コンパクト差分(8次精度)</u>Peter Chu and Chenwu Fan (1998) $f'_{i}=a_{1}(f_{i+1}-f_{i-1})+a_{2}(f'_{i+1}+f'_{i-1})+a_{3}(f''_{i+1}-f''_{i-1})+a_{4}(f'''_{i+1}+f''_{i-1})$

$f'_{i} = a_{1}(f_{i+1} - f_{i-1}) + a_{2}(f'_{i+1} + f'_{i-1}) + a_{3}(f'_{i+1} - f'_{i-1}) + a_{4}(f''_{i+1} + f''_{i-1})$

 $f''_{i} = b(f_{i+1} - 2f_i + f_{i-1}) + b(f'_{i+1} - f'_{i-1}) + b_3(f''_{i+1} + f''_{i-1}) + b_4(f''_{i+1} - f''_{i-1})$

 $f_{i}'''=c_{1}(f_{i+1}-f_{i-1})+c_{2}(f_{i+1}+f_{i-1})+c_{3}(f_{i+1}''-f_{i-1}')+c_{4}(f_{i+1}'''+f_{i-1}'')$

<u>極付近での格子集中による不安定性</u>

コンパクトスキームの問題点: 境界条件の取り扱いのため、時間的に不安定

Low Pass spatial Filter の導入(J.Shang,1999)

U: the filtered values u: the raw values

$$\beta U_{i-1} + U_i + \beta U_{i+1} = \sum a_n (u_{i+n} + u_{i-n})/2$$
$$-0.5 < \beta < 0.5$$
$$n=0,1,2,\dots,N$$

<u>極付近での格子集中による不安定性</u>

コンパクトスキームの問題点: 境界条件の取り扱いのため、時間的に不安定

Low Pass spatial Filter の導入(J.Shang,1999)

U: the filtered values u: the raw values

$$\beta U_{i-1} + U_i + \beta U_{i+1} = \sum a_n (u_{i+n} + u_{i-n})/2$$
$$-0.5 < \beta < 0.5$$
$$n=0,1,2,\dots,N$$

WilliamsonのTest Case 1 に適用した場合

1周後の状態

相対誤差の比較(64x32)

計算時間(スカラー計算機)

結合コンパクト差分法 ----> 高精度、高解像度の球面上の計算に適用可能

今後の課題

ポアソン方程式解法の高速化 複雑境界への適用(海洋など)

<u>(C)可視化手法の開発</u>

・ 大規模シミュレーション → 膨大なデータ → 理解が困難 → 可視化

<u>高速ボリュームレンダリング</u>
 – 3次元テクスチャ(模様)の計算が高速
 – テクスチャの重ね合わせ処理が高速

圧力と渦度場の可視化 $\nabla^2 p = -\left(s^2 - \frac{1}{2}\omega^2\right)$

回転球面上の流体モデル計算コード実装と評価

里深サブプロジェクト 大規模シミュレーション手法

The End

ご静聴ありがとうございました